M. Eisenbach, Alexander Kolarow, Konrad Schenk, Klaus Debes, H. Groß
{"title":"基于快速在线特征选择和分数水平融合的基于视图不变外观的人物再识别","authors":"M. Eisenbach, Alexander Kolarow, Konrad Schenk, Klaus Debes, H. Groß","doi":"10.1109/AVSS.2012.81","DOIUrl":null,"url":null,"abstract":"Fast and robust person reidentification is an important task in multi-camera surveillance and automated access control. We present an efficient appearance-based algorithm, able to reidentify a person regardless of occlusions, distance to the camera, and changes in view and lighting. The use of fast online feature selection techniques enables us to perform reidentification in hyper-real-time for a multi-camera system, by taking only 10 seconds for evaluating 100 minutes of HD-video data. We demonstrate, that our approach surpasses current appearance-based state-of-the-art in reidentification quality and computational speed and sets a new reference in non-biometric reidentification.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"View Invariant Appearance-Based Person Reidentification Using Fast Online Feature Selection and Score Level Fusion\",\"authors\":\"M. Eisenbach, Alexander Kolarow, Konrad Schenk, Klaus Debes, H. Groß\",\"doi\":\"10.1109/AVSS.2012.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and robust person reidentification is an important task in multi-camera surveillance and automated access control. We present an efficient appearance-based algorithm, able to reidentify a person regardless of occlusions, distance to the camera, and changes in view and lighting. The use of fast online feature selection techniques enables us to perform reidentification in hyper-real-time for a multi-camera system, by taking only 10 seconds for evaluating 100 minutes of HD-video data. We demonstrate, that our approach surpasses current appearance-based state-of-the-art in reidentification quality and computational speed and sets a new reference in non-biometric reidentification.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
View Invariant Appearance-Based Person Reidentification Using Fast Online Feature Selection and Score Level Fusion
Fast and robust person reidentification is an important task in multi-camera surveillance and automated access control. We present an efficient appearance-based algorithm, able to reidentify a person regardless of occlusions, distance to the camera, and changes in view and lighting. The use of fast online feature selection techniques enables us to perform reidentification in hyper-real-time for a multi-camera system, by taking only 10 seconds for evaluating 100 minutes of HD-video data. We demonstrate, that our approach surpasses current appearance-based state-of-the-art in reidentification quality and computational speed and sets a new reference in non-biometric reidentification.