何时何地?:基于微博流的行为主导位置预测

Bhaskar Gautam, Annappa Basava, Abhishek Singh, Amit Agrawal
{"title":"何时何地?:基于微博流的行为主导位置预测","authors":"Bhaskar Gautam, Annappa Basava, Abhishek Singh, Amit Agrawal","doi":"10.1109/ICDMW.2018.00169","DOIUrl":null,"url":null,"abstract":"The proliferation of smartphones and wearable devices has increased the availability of large amounts of geospatial streams to provide significant automated discovery of knowledge in pervasive environments, but most prominent information related to altering interests have not yet adequately capitalized. In this paper, we provide a novel algorithm to exploit the dynamic fluctuations in user's point-of-interest while forecasting the future place of visit with fine granularity. Our proposed algorithm is based on the dynamic formation of collective personality communities using different languages, opinions, geographical and temporal distributions for finding out optimized equivalent content. We performed extensive empirical experiments involving, real-time streams derived from 0.6 million stream tuples of micro-blog comprising 1945 social person fusion with graph algorithm and feed-forward neural network model as a predictive classification model. Lastly, The framework achieves 62.10% mean average precision on 1,20,000 embeddings on unlabeled users and surprisingly 85.92% increment on the state-of-the-art approach.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"When and Where?: Behavior Dominant Location Forecasting with Micro-Blog Streams\",\"authors\":\"Bhaskar Gautam, Annappa Basava, Abhishek Singh, Amit Agrawal\",\"doi\":\"10.1109/ICDMW.2018.00169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of smartphones and wearable devices has increased the availability of large amounts of geospatial streams to provide significant automated discovery of knowledge in pervasive environments, but most prominent information related to altering interests have not yet adequately capitalized. In this paper, we provide a novel algorithm to exploit the dynamic fluctuations in user's point-of-interest while forecasting the future place of visit with fine granularity. Our proposed algorithm is based on the dynamic formation of collective personality communities using different languages, opinions, geographical and temporal distributions for finding out optimized equivalent content. We performed extensive empirical experiments involving, real-time streams derived from 0.6 million stream tuples of micro-blog comprising 1945 social person fusion with graph algorithm and feed-forward neural network model as a predictive classification model. Lastly, The framework achieves 62.10% mean average precision on 1,20,000 embeddings on unlabeled users and surprisingly 85.92% increment on the state-of-the-art approach.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能手机和可穿戴设备的普及增加了大量地理空间流的可用性,可以在无处不在的环境中提供重要的知识自动发现,但与改变兴趣相关的最重要信息尚未得到充分利用。本文提出了一种新的算法,利用用户兴趣点的动态波动,对未来的访问地点进行细粒度预测。我们提出的算法是基于使用不同语言、观点、地理和时间分布的集体人格社区的动态形成来寻找优化的等效内容。我们进行了广泛的实证实验,涉及来自60万个微博流元组的实时流,其中包含1945个社会人物融合,并使用图算法和前馈神经网络模型作为预测分类模型。最后,该框架在未标记用户的12万个嵌入上实现了62.10%的平均精度,比最先进的方法惊人地提高了85.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When and Where?: Behavior Dominant Location Forecasting with Micro-Blog Streams
The proliferation of smartphones and wearable devices has increased the availability of large amounts of geospatial streams to provide significant automated discovery of knowledge in pervasive environments, but most prominent information related to altering interests have not yet adequately capitalized. In this paper, we provide a novel algorithm to exploit the dynamic fluctuations in user's point-of-interest while forecasting the future place of visit with fine granularity. Our proposed algorithm is based on the dynamic formation of collective personality communities using different languages, opinions, geographical and temporal distributions for finding out optimized equivalent content. We performed extensive empirical experiments involving, real-time streams derived from 0.6 million stream tuples of micro-blog comprising 1945 social person fusion with graph algorithm and feed-forward neural network model as a predictive classification model. Lastly, The framework achieves 62.10% mean average precision on 1,20,000 embeddings on unlabeled users and surprisingly 85.92% increment on the state-of-the-art approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信