基于时频分析的步态识别

Xiaxi Huang, N. Boulgouris, A. Georgakis
{"title":"基于时频分析的步态识别","authors":"Xiaxi Huang, N. Boulgouris, A. Georgakis","doi":"10.1109/ICDSP.2009.5201264","DOIUrl":null,"url":null,"abstract":"In this paper, we extract model-based gait features and investigate the time-frequency representations of the feature signals. A novel gait recognition approach is proposed, which is based on time-frequency analysis of gait feature signals using the Wigner distribution. Time-frequency analysis using theWigner distribution is aimed at capturing gait information that is not extractable using other time-domain or frequency-domain techniques. Experiments, conducted based on the above approach, yielded encouraging results.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"619 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gait recognition based on time-frequency analysis\",\"authors\":\"Xiaxi Huang, N. Boulgouris, A. Georgakis\",\"doi\":\"10.1109/ICDSP.2009.5201264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extract model-based gait features and investigate the time-frequency representations of the feature signals. A novel gait recognition approach is proposed, which is based on time-frequency analysis of gait feature signals using the Wigner distribution. Time-frequency analysis using theWigner distribution is aimed at capturing gait information that is not extractable using other time-domain or frequency-domain techniques. Experiments, conducted based on the above approach, yielded encouraging results.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"619 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提取基于模型的步态特征,并研究特征信号的时频表示。提出了一种基于Wigner分布对步态特征信号进行时频分析的步态识别方法。使用wigner分布的时频分析旨在捕获使用其他时域或频域技术无法提取的步态信息。根据上述方法进行的实验取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait recognition based on time-frequency analysis
In this paper, we extract model-based gait features and investigate the time-frequency representations of the feature signals. A novel gait recognition approach is proposed, which is based on time-frequency analysis of gait feature signals using the Wigner distribution. Time-frequency analysis using theWigner distribution is aimed at capturing gait information that is not extractable using other time-domain or frequency-domain techniques. Experiments, conducted based on the above approach, yielded encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信