J. Wiest, Matthias Karg, Felix Kunz, Stephan Reuter, U. Kressel, K. Dietmayer
{"title":"一种自学习车辆概率机动预测框架及其在交叉口上的应用","authors":"J. Wiest, Matthias Karg, Felix Kunz, Stephan Reuter, U. Kressel, K. Dietmayer","doi":"10.1109/IVS.2015.7225710","DOIUrl":null,"url":null,"abstract":"This contribution proposes a novel algorithm for predicting maneuvers at intersections. With applicability to driver assistance systems and autonomous driving, the presented methodology estimates a maneuver probability for every possible direction at an intersection. For this purpose, a generic intersection-feature, space-based representation is defined which combines static and dynamic intersection information with the dynamic properties of the observed vehicle, provided by a tracking module. A statistical behavior model is learned from previously recorded patterns by approximating the resulting feature space. Because the feature space consists of different types of features (mixed-feature space), a Bernoulli-Gaussian Mixture Model is applied as approximating function. Further, an online learning extension is proposed to adapt the model to the characteristics of different intersections.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A probabilistic maneuver prediction framework for self-learning vehicles with application to intersections\",\"authors\":\"J. Wiest, Matthias Karg, Felix Kunz, Stephan Reuter, U. Kressel, K. Dietmayer\",\"doi\":\"10.1109/IVS.2015.7225710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution proposes a novel algorithm for predicting maneuvers at intersections. With applicability to driver assistance systems and autonomous driving, the presented methodology estimates a maneuver probability for every possible direction at an intersection. For this purpose, a generic intersection-feature, space-based representation is defined which combines static and dynamic intersection information with the dynamic properties of the observed vehicle, provided by a tracking module. A statistical behavior model is learned from previously recorded patterns by approximating the resulting feature space. Because the feature space consists of different types of features (mixed-feature space), a Bernoulli-Gaussian Mixture Model is applied as approximating function. Further, an online learning extension is proposed to adapt the model to the characteristics of different intersections.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A probabilistic maneuver prediction framework for self-learning vehicles with application to intersections
This contribution proposes a novel algorithm for predicting maneuvers at intersections. With applicability to driver assistance systems and autonomous driving, the presented methodology estimates a maneuver probability for every possible direction at an intersection. For this purpose, a generic intersection-feature, space-based representation is defined which combines static and dynamic intersection information with the dynamic properties of the observed vehicle, provided by a tracking module. A statistical behavior model is learned from previously recorded patterns by approximating the resulting feature space. Because the feature space consists of different types of features (mixed-feature space), a Bernoulli-Gaussian Mixture Model is applied as approximating function. Further, an online learning extension is proposed to adapt the model to the characteristics of different intersections.