评估LiDAR和Kinect校准方法及其应用

Sheung-Lai Lo, K. Leung, Y. Leung
{"title":"评估LiDAR和Kinect校准方法及其应用","authors":"Sheung-Lai Lo, K. Leung, Y. Leung","doi":"10.1109/ICCRE51898.2021.9435662","DOIUrl":null,"url":null,"abstract":"A multiple sensors platform is a commonly-used method for robotic application which can capture different types of environmental data. However, the calibration process through finding the geometric relationships is needed in order to integrate different sensors’ data together in the same coordination system representation. In this study, we proposed and implemented a simple and yet accurate calibration method for estimating the extrinsic parameters in a transformation matrix representation between more than one sensor with 3D Point-Cloud data. Our calibration method uses both Kinect and LiDAR Point-Cloud scans based on a cuboid as a calibration object, which obtains efficient information with high-level feature points. Such extrinsic parameters can be distinguished with a single shot of capturing the Point-Cloud frame. To verify whether or not our method is practical in a real-life scenario, we evaluated the method and obtained the data using a homemade robot. With our proposed calibration methods, it enables a possibility to exchange the data between LiDAR and Kinect simply and robustly.","PeriodicalId":382619,"journal":{"name":"2021 6th International Conference on Control and Robotics Engineering (ICCRE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the LiDAR and Kinect Calibration Methods and Application\",\"authors\":\"Sheung-Lai Lo, K. Leung, Y. Leung\",\"doi\":\"10.1109/ICCRE51898.2021.9435662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiple sensors platform is a commonly-used method for robotic application which can capture different types of environmental data. However, the calibration process through finding the geometric relationships is needed in order to integrate different sensors’ data together in the same coordination system representation. In this study, we proposed and implemented a simple and yet accurate calibration method for estimating the extrinsic parameters in a transformation matrix representation between more than one sensor with 3D Point-Cloud data. Our calibration method uses both Kinect and LiDAR Point-Cloud scans based on a cuboid as a calibration object, which obtains efficient information with high-level feature points. Such extrinsic parameters can be distinguished with a single shot of capturing the Point-Cloud frame. To verify whether or not our method is practical in a real-life scenario, we evaluated the method and obtained the data using a homemade robot. With our proposed calibration methods, it enables a possibility to exchange the data between LiDAR and Kinect simply and robustly.\",\"PeriodicalId\":382619,\"journal\":{\"name\":\"2021 6th International Conference on Control and Robotics Engineering (ICCRE)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Control and Robotics Engineering (ICCRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCRE51898.2021.9435662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Control and Robotics Engineering (ICCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRE51898.2021.9435662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多传感器平台是机器人应用中常用的一种方法,它可以捕获不同类型的环境数据。然而,为了将不同传感器的数据整合到同一坐标系表示中,需要通过寻找几何关系进行标定。在这项研究中,我们提出并实现了一种简单而准确的校准方法,用于估计具有三维点云数据的多个传感器之间的变换矩阵表示中的外部参数。我们的校准方法同时使用Kinect和基于长方体的LiDAR点云扫描作为校准对象,获得具有高级特征点的高效信息。这些外部参数可以通过单次拍摄点云帧来区分。为了验证我们的方法在现实场景中是否实用,我们使用自制机器人评估了该方法并获得了数据。通过我们提出的校准方法,它可以简单而稳健地在LiDAR和Kinect之间交换数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the LiDAR and Kinect Calibration Methods and Application
A multiple sensors platform is a commonly-used method for robotic application which can capture different types of environmental data. However, the calibration process through finding the geometric relationships is needed in order to integrate different sensors’ data together in the same coordination system representation. In this study, we proposed and implemented a simple and yet accurate calibration method for estimating the extrinsic parameters in a transformation matrix representation between more than one sensor with 3D Point-Cloud data. Our calibration method uses both Kinect and LiDAR Point-Cloud scans based on a cuboid as a calibration object, which obtains efficient information with high-level feature points. Such extrinsic parameters can be distinguished with a single shot of capturing the Point-Cloud frame. To verify whether or not our method is practical in a real-life scenario, we evaluated the method and obtained the data using a homemade robot. With our proposed calibration methods, it enables a possibility to exchange the data between LiDAR and Kinect simply and robustly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信