可逆确定性系统的pspace -完备性

E. Demaine, R. Hearn, D. Hendrickson, J. Lynch
{"title":"可逆确定性系统的pspace -完备性","authors":"E. Demaine, R. Hearn, D. Hendrickson, J. Lynch","doi":"10.48550/arXiv.2207.07229","DOIUrl":null,"url":null,"abstract":"We prove PSPACE-completeness of several reversible, fully deterministic systems. At the core, we develop a framework for such proofs (building on a result of Tsukiji and Hagiwara and a framework for motion planning through gadgets), showing that any system that can implement three basic gadgets is PSPACE-complete. We then apply this framework to four different systems, showing its versatility. First, we prove that Deterministic Constraint Logic is PSPACE-complete, fixing an error in a previous argument from 2008. Second, we give a new PSPACE-hardness proof for the reversible ‘billiard ball’ model of Fredkin and Toffoli from 40 years ago, newly establishing hardness when only two balls move at once. Third, we prove PSPACE-completeness of zero-player motion planning with any reversible deterministic interacting [Formula: see text]-tunnel gadget and a ‘rotate clockwise’ gadget (a zero-player analog of branching hallways). Fourth, we give simpler proofs that zero-player motion planning is PSPACE-complete with just a single gadget, the 3-spinner. These results should in turn make it even easier to prove PSPACE-hardness of other reversible deterministic systems.","PeriodicalId":340847,"journal":{"name":"Machines, Computations, and Universality","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PSPACE-Completeness of Reversible Deterministic Systems\",\"authors\":\"E. Demaine, R. Hearn, D. Hendrickson, J. Lynch\",\"doi\":\"10.48550/arXiv.2207.07229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove PSPACE-completeness of several reversible, fully deterministic systems. At the core, we develop a framework for such proofs (building on a result of Tsukiji and Hagiwara and a framework for motion planning through gadgets), showing that any system that can implement three basic gadgets is PSPACE-complete. We then apply this framework to four different systems, showing its versatility. First, we prove that Deterministic Constraint Logic is PSPACE-complete, fixing an error in a previous argument from 2008. Second, we give a new PSPACE-hardness proof for the reversible ‘billiard ball’ model of Fredkin and Toffoli from 40 years ago, newly establishing hardness when only two balls move at once. Third, we prove PSPACE-completeness of zero-player motion planning with any reversible deterministic interacting [Formula: see text]-tunnel gadget and a ‘rotate clockwise’ gadget (a zero-player analog of branching hallways). Fourth, we give simpler proofs that zero-player motion planning is PSPACE-complete with just a single gadget, the 3-spinner. These results should in turn make it even easier to prove PSPACE-hardness of other reversible deterministic systems.\",\"PeriodicalId\":340847,\"journal\":{\"name\":\"Machines, Computations, and Universality\",\"volume\":\"270 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines, Computations, and Universality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.07229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines, Computations, and Universality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.07229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了几个可逆的、完全确定的系统的pspace -完备性。在核心,我们为这样的证明开发了一个框架(基于筑地和萩原的结果以及通过小工具进行运动规划的框架),表明任何可以实现三个基本小工具的系统都是pspace完备的。然后,我们将此框架应用于四个不同的系统,以展示其多功能性。首先,我们证明了确定性约束逻辑是pspace完备的,修正了2008年之前论证中的一个错误。其次,我们对40年前Fredkin和Toffoli的可逆“台球”模型给出了新的pspace -硬度证明,新建立了只有两个球同时运动时的硬度。第三,我们用任何可逆的确定性交互(公式:见文本)-隧道小工具和“顺时针旋转”小工具(分支走廊的零参与者模拟)证明了零参与者运动规划的pspace -完备性。第四,我们给出了更简单的证明,证明零玩家运动规划是PSPACE-complete的,只需要一个小工具,即3-spinner。这些结果反过来使证明其他可逆确定性系统的pspace -硬度变得更加容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSPACE-Completeness of Reversible Deterministic Systems
We prove PSPACE-completeness of several reversible, fully deterministic systems. At the core, we develop a framework for such proofs (building on a result of Tsukiji and Hagiwara and a framework for motion planning through gadgets), showing that any system that can implement three basic gadgets is PSPACE-complete. We then apply this framework to four different systems, showing its versatility. First, we prove that Deterministic Constraint Logic is PSPACE-complete, fixing an error in a previous argument from 2008. Second, we give a new PSPACE-hardness proof for the reversible ‘billiard ball’ model of Fredkin and Toffoli from 40 years ago, newly establishing hardness when only two balls move at once. Third, we prove PSPACE-completeness of zero-player motion planning with any reversible deterministic interacting [Formula: see text]-tunnel gadget and a ‘rotate clockwise’ gadget (a zero-player analog of branching hallways). Fourth, we give simpler proofs that zero-player motion planning is PSPACE-complete with just a single gadget, the 3-spinner. These results should in turn make it even easier to prove PSPACE-hardness of other reversible deterministic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信