基于快速加解密的优化Paillier密码系统

Huanyu Ma, Shuai Han, H. Lei
{"title":"基于快速加解密的优化Paillier密码系统","authors":"Huanyu Ma, Shuai Han, H. Lei","doi":"10.1145/3485832.3485842","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new optimization for the Paillier’s additively homomorphic encryption scheme (Eurocrypt’99). At the heart of our optimization is a well-chosen subgroup of the underlying , which is used as the randomness space for masking messages during encryption. The size of the subgroup is significantly smaller than that of , leading to faster encryption and decryption algorithms of our optimization. We establish the one-wayness and semantic security of our optimized Paillier scheme upon those of an optimization (i.e., “Scheme 3”) made by Paillier in Eurocrypt’99. Thus, our optimized scheme is one-way under the partial discrete logarithm (PDL) assumption, and is semantically secure under the decisional PDL (DPDL) assumption. On the other hand, we present a detailed analysis on the concrete security of our optimized scheme under several known methods. To provide 112-bit security, our analysis suggests that a 2048-bit modulus N and a well-chosen subgroup of size 448-bit would suffice. We compare our optimization with existing optimized Paillier schemes, including the Jurik’s optimization proposed by Jurik in his Ph.D. thesis and the Paillier’s optimization in Eurocrypt’99. Our experiments show that, – the encryption of our optimization is about 2.7 times faster than that of the Jurik’s optimization and is about 7.5 times faster than that of the Paillier’s optimization; – the decryption of our optimization is about 4.1 times faster than that of the Jurik’s optimization and has a similar performance with that of the Paillier’s optimization.","PeriodicalId":175869,"journal":{"name":"Annual Computer Security Applications Conference","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimized Paillier’s Cryptosystem with Fast Encryption and Decryption\",\"authors\":\"Huanyu Ma, Shuai Han, H. Lei\",\"doi\":\"10.1145/3485832.3485842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new optimization for the Paillier’s additively homomorphic encryption scheme (Eurocrypt’99). At the heart of our optimization is a well-chosen subgroup of the underlying , which is used as the randomness space for masking messages during encryption. The size of the subgroup is significantly smaller than that of , leading to faster encryption and decryption algorithms of our optimization. We establish the one-wayness and semantic security of our optimized Paillier scheme upon those of an optimization (i.e., “Scheme 3”) made by Paillier in Eurocrypt’99. Thus, our optimized scheme is one-way under the partial discrete logarithm (PDL) assumption, and is semantically secure under the decisional PDL (DPDL) assumption. On the other hand, we present a detailed analysis on the concrete security of our optimized scheme under several known methods. To provide 112-bit security, our analysis suggests that a 2048-bit modulus N and a well-chosen subgroup of size 448-bit would suffice. We compare our optimization with existing optimized Paillier schemes, including the Jurik’s optimization proposed by Jurik in his Ph.D. thesis and the Paillier’s optimization in Eurocrypt’99. Our experiments show that, – the encryption of our optimization is about 2.7 times faster than that of the Jurik’s optimization and is about 7.5 times faster than that of the Paillier’s optimization; – the decryption of our optimization is about 4.1 times faster than that of the Jurik’s optimization and has a similar performance with that of the Paillier’s optimization.\",\"PeriodicalId\":175869,\"journal\":{\"name\":\"Annual Computer Security Applications Conference\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485832.3485842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485832.3485842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文对Paillier加性同态加密方案(Eurocrypt ' 99)提出了一种新的优化方案。我们优化的核心是一个精心选择的底层子组,它被用作加密期间屏蔽消息的随机空间。子群的大小明显小于的,导致我们优化的加密和解密算法更快。我们在Paillier在Eurocrypt ' 99中所做的优化(即“方案3”)的单向性和语义安全性上建立了优化后的Paillier方案的单向性和语义安全性。因此,我们的优化方案在部分离散对数(PDL)假设下是单向的,在决策对数(DPDL)假设下是语义安全的。另一方面,在几种已知的方法下,我们对优化方案的具体安全性进行了详细的分析。为了提供112位的安全性,我们的分析表明,2048位的模数N和精心选择的448位大小的子组就足够了。我们将我们的优化与现有的优化Paillier方案进行了比较,包括Jurik在他的博士论文中提出的Jurik优化和Eurocrypt ' 99中的Paillier优化。我们的实验表明,我们的优化算法的加密速度比Jurik算法快2.7倍,比Paillier算法快7.5倍;我们优化的解密速度大约是Jurik优化的4.1倍,并且与Paillier优化的性能相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Paillier’s Cryptosystem with Fast Encryption and Decryption
In this paper, we propose a new optimization for the Paillier’s additively homomorphic encryption scheme (Eurocrypt’99). At the heart of our optimization is a well-chosen subgroup of the underlying , which is used as the randomness space for masking messages during encryption. The size of the subgroup is significantly smaller than that of , leading to faster encryption and decryption algorithms of our optimization. We establish the one-wayness and semantic security of our optimized Paillier scheme upon those of an optimization (i.e., “Scheme 3”) made by Paillier in Eurocrypt’99. Thus, our optimized scheme is one-way under the partial discrete logarithm (PDL) assumption, and is semantically secure under the decisional PDL (DPDL) assumption. On the other hand, we present a detailed analysis on the concrete security of our optimized scheme under several known methods. To provide 112-bit security, our analysis suggests that a 2048-bit modulus N and a well-chosen subgroup of size 448-bit would suffice. We compare our optimization with existing optimized Paillier schemes, including the Jurik’s optimization proposed by Jurik in his Ph.D. thesis and the Paillier’s optimization in Eurocrypt’99. Our experiments show that, – the encryption of our optimization is about 2.7 times faster than that of the Jurik’s optimization and is about 7.5 times faster than that of the Paillier’s optimization; – the decryption of our optimization is about 4.1 times faster than that of the Jurik’s optimization and has a similar performance with that of the Paillier’s optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信