视频内容表征的耦合马尔可夫链

J. Sánchez, Xavier Binefa, J. Kender
{"title":"视频内容表征的耦合马尔可夫链","authors":"J. Sánchez, Xavier Binefa, J. Kender","doi":"10.1109/ICPR.2002.1048338","DOIUrl":null,"url":null,"abstract":"We propose a compact descriptor of video contents based on modeling the temporal behavior of image features using coupled Markov chains. The framework allows us to combine multiple features within the same model, including the representation of the dependencies and relationships between them. The Kullback-Leibler divergence stands out as the base of a perceptually significant distance measure for our descriptor Our experiments show that complex highlevel visual contents in different domains can be characterized using very simple low-level features, such as motion and color.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Coupled Markov chains for video contents characterization\",\"authors\":\"J. Sánchez, Xavier Binefa, J. Kender\",\"doi\":\"10.1109/ICPR.2002.1048338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a compact descriptor of video contents based on modeling the temporal behavior of image features using coupled Markov chains. The framework allows us to combine multiple features within the same model, including the representation of the dependencies and relationships between them. The Kullback-Leibler divergence stands out as the base of a perceptually significant distance measure for our descriptor Our experiments show that complex highlevel visual contents in different domains can be characterized using very simple low-level features, such as motion and color.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于对图像特征的时间行为进行耦合马尔可夫链建模,提出了一种紧凑的视频内容描述符。该框架允许我们在同一个模型中组合多个特性,包括依赖关系的表示和它们之间的关系。我们的实验表明,不同领域的复杂高级视觉内容可以使用非常简单的低级特征(如运动和颜色)来表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Markov chains for video contents characterization
We propose a compact descriptor of video contents based on modeling the temporal behavior of image features using coupled Markov chains. The framework allows us to combine multiple features within the same model, including the representation of the dependencies and relationships between them. The Kullback-Leibler divergence stands out as the base of a perceptually significant distance measure for our descriptor Our experiments show that complex highlevel visual contents in different domains can be characterized using very simple low-level features, such as motion and color.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信