用基数正弦函数求解量子波方程

P. Marconcini
{"title":"用基数正弦函数求解量子波方程","authors":"P. Marconcini","doi":"10.1109/NANO.2013.6721037","DOIUrl":null,"url":null,"abstract":"We propose a method to solve differential problems, and in particular quantum wave equations, with periodic boundary conditions, in the direct space using periodic repetitions of the cardinal sine functions as basis functions, and we adopt it for the solution of the Schrödinger equation and, in graphene nanoribbons, of the Dirac equation. We show that this method, unlike finite-difference approaches, allows to avoid the errors deriving from the numerical approximation of the derivatives, and, if all of the terms of the equations are properly handled, is equivalent to a reciprocal space solution.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"8 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of quantum wave equations using cardinal sine functions\",\"authors\":\"P. Marconcini\",\"doi\":\"10.1109/NANO.2013.6721037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to solve differential problems, and in particular quantum wave equations, with periodic boundary conditions, in the direct space using periodic repetitions of the cardinal sine functions as basis functions, and we adopt it for the solution of the Schrödinger equation and, in graphene nanoribbons, of the Dirac equation. We show that this method, unlike finite-difference approaches, allows to avoid the errors deriving from the numerical approximation of the derivatives, and, if all of the terms of the equations are properly handled, is equivalent to a reciprocal space solution.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"8 23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6721037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6721037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种在直接空间中使用基数正弦函数的周期性重复作为基函数来求解具有周期性边界条件的微分问题,特别是量子波方程的方法,并将其用于求解Schrödinger方程和石墨烯纳米带中的Dirac方程。我们证明,这种方法,不像有限差分方法,允许避免由导数的数值近似引起的误差,并且,如果方程的所有项都得到适当处理,等价于一个互反空间解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of quantum wave equations using cardinal sine functions
We propose a method to solve differential problems, and in particular quantum wave equations, with periodic boundary conditions, in the direct space using periodic repetitions of the cardinal sine functions as basis functions, and we adopt it for the solution of the Schrödinger equation and, in graphene nanoribbons, of the Dirac equation. We show that this method, unlike finite-difference approaches, allows to avoid the errors deriving from the numerical approximation of the derivatives, and, if all of the terms of the equations are properly handled, is equivalent to a reciprocal space solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信