Estevam Hruschka, E. B. D. Santos, Sebastian D. C. de O. Galvão
{"title":"条件独立贝叶斯分类器归纳过程中的变量排序:一种进化方法","authors":"Estevam Hruschka, E. B. D. Santos, Sebastian D. C. de O. Galvão","doi":"10.1109/HIS.2007.67","DOIUrl":null,"url":null,"abstract":"This work proposes, implements and discusses a hybrid Bayes/genetic collaboration (VOGAC-MarkovPC) designed to induce conditional independence Bayesian classifiers from data. The main contribution is the use of MarkovPC algorithm in order to reduce the computational complexity of a genetic algorithm (GA) designed to explore the variable orderings (VOs) in order to optimize the induced classifiers. Experiments performed in a number of datasets revealed that VOGAC-MarkovPC required less than 25% of the time demanded by VOGAC-PC on average. In addition, when concerning the classification accuracy, VOGAC-MakovPC performed as well as VOGAC-PC did.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable Ordering in the Conditional Independence Bayesian Classifier Induction Process: An Evolutionary Approach\",\"authors\":\"Estevam Hruschka, E. B. D. Santos, Sebastian D. C. de O. Galvão\",\"doi\":\"10.1109/HIS.2007.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes, implements and discusses a hybrid Bayes/genetic collaboration (VOGAC-MarkovPC) designed to induce conditional independence Bayesian classifiers from data. The main contribution is the use of MarkovPC algorithm in order to reduce the computational complexity of a genetic algorithm (GA) designed to explore the variable orderings (VOs) in order to optimize the induced classifiers. Experiments performed in a number of datasets revealed that VOGAC-MarkovPC required less than 25% of the time demanded by VOGAC-PC on average. In addition, when concerning the classification accuracy, VOGAC-MakovPC performed as well as VOGAC-PC did.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2007.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variable Ordering in the Conditional Independence Bayesian Classifier Induction Process: An Evolutionary Approach
This work proposes, implements and discusses a hybrid Bayes/genetic collaboration (VOGAC-MarkovPC) designed to induce conditional independence Bayesian classifiers from data. The main contribution is the use of MarkovPC algorithm in order to reduce the computational complexity of a genetic algorithm (GA) designed to explore the variable orderings (VOs) in order to optimize the induced classifiers. Experiments performed in a number of datasets revealed that VOGAC-MarkovPC required less than 25% of the time demanded by VOGAC-PC on average. In addition, when concerning the classification accuracy, VOGAC-MakovPC performed as well as VOGAC-PC did.