条件独立贝叶斯分类器归纳过程中的变量排序:一种进化方法

Estevam Hruschka, E. B. D. Santos, Sebastian D. C. de O. Galvão
{"title":"条件独立贝叶斯分类器归纳过程中的变量排序:一种进化方法","authors":"Estevam Hruschka, E. B. D. Santos, Sebastian D. C. de O. Galvão","doi":"10.1109/HIS.2007.67","DOIUrl":null,"url":null,"abstract":"This work proposes, implements and discusses a hybrid Bayes/genetic collaboration (VOGAC-MarkovPC) designed to induce conditional independence Bayesian classifiers from data. The main contribution is the use of MarkovPC algorithm in order to reduce the computational complexity of a genetic algorithm (GA) designed to explore the variable orderings (VOs) in order to optimize the induced classifiers. Experiments performed in a number of datasets revealed that VOGAC-MarkovPC required less than 25% of the time demanded by VOGAC-PC on average. In addition, when concerning the classification accuracy, VOGAC-MakovPC performed as well as VOGAC-PC did.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable Ordering in the Conditional Independence Bayesian Classifier Induction Process: An Evolutionary Approach\",\"authors\":\"Estevam Hruschka, E. B. D. Santos, Sebastian D. C. de O. Galvão\",\"doi\":\"10.1109/HIS.2007.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes, implements and discusses a hybrid Bayes/genetic collaboration (VOGAC-MarkovPC) designed to induce conditional independence Bayesian classifiers from data. The main contribution is the use of MarkovPC algorithm in order to reduce the computational complexity of a genetic algorithm (GA) designed to explore the variable orderings (VOs) in order to optimize the induced classifiers. Experiments performed in a number of datasets revealed that VOGAC-MarkovPC required less than 25% of the time demanded by VOGAC-PC on average. In addition, when concerning the classification accuracy, VOGAC-MakovPC performed as well as VOGAC-PC did.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2007.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作提出、实现并讨论了一种混合贝叶斯/遗传协作(VOGAC-MarkovPC),旨在从数据中诱导条件独立贝叶斯分类器。主要贡献是使用MarkovPC算法来降低用于探索变量排序(VOs)以优化诱导分类器的遗传算法(GA)的计算复杂度。在多个数据集上进行的实验表明,VOGAC-MarkovPC所需的平均时间不到VOGAC-PC所需时间的25%。此外,在分类精度方面,VOGAC-MakovPC与VOGAC-PC表现相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Ordering in the Conditional Independence Bayesian Classifier Induction Process: An Evolutionary Approach
This work proposes, implements and discusses a hybrid Bayes/genetic collaboration (VOGAC-MarkovPC) designed to induce conditional independence Bayesian classifiers from data. The main contribution is the use of MarkovPC algorithm in order to reduce the computational complexity of a genetic algorithm (GA) designed to explore the variable orderings (VOs) in order to optimize the induced classifiers. Experiments performed in a number of datasets revealed that VOGAC-MarkovPC required less than 25% of the time demanded by VOGAC-PC on average. In addition, when concerning the classification accuracy, VOGAC-MakovPC performed as well as VOGAC-PC did.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信