一种改进的加权特征提取算法

Fanrong Meng, Mu Zhu
{"title":"一种改进的加权特征提取算法","authors":"Fanrong Meng, Mu Zhu","doi":"10.1109/CASE.2009.92","DOIUrl":null,"url":null,"abstract":"In non-supervised data set, the importance of each feature is different. If the feature is setted with a proper weight, which can fully considers the lever of the influence on the cluster effect, then the clustering result will be improved. A feature evaluate function is proposed to obtain a set of feature weight vectors by minimizing the function, which is a multi-objective problem. So a fast and elitist multi-objective genetic algorithm is used to solve the problem and obtain the weight of feature. Finally, the weight of feature is introduced into the standard K-Means algorithm and the experiments on the UCI dataset show the validity of the algorithm.","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved Weighted Feature Abstracting Algorithm\",\"authors\":\"Fanrong Meng, Mu Zhu\",\"doi\":\"10.1109/CASE.2009.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In non-supervised data set, the importance of each feature is different. If the feature is setted with a proper weight, which can fully considers the lever of the influence on the cluster effect, then the clustering result will be improved. A feature evaluate function is proposed to obtain a set of feature weight vectors by minimizing the function, which is a multi-objective problem. So a fast and elitist multi-objective genetic algorithm is used to solve the problem and obtain the weight of feature. Finally, the weight of feature is introduced into the standard K-Means algorithm and the experiments on the UCI dataset show the validity of the algorithm.\",\"PeriodicalId\":294566,\"journal\":{\"name\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2009.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在非监督数据集中,每个特征的重要性是不同的。如果对特征设置适当的权重,能够充分考虑对聚类效应的影响程度,那么聚类结果将得到改善。提出了一个特征评价函数,通过对函数的最小化得到一组特征权重向量,这是一个多目标问题。为此,采用一种快速、最优的多目标遗传算法求解该问题并获得特征权重。最后,将特征权值引入标准K-Means算法,并在UCI数据集上进行了实验,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Weighted Feature Abstracting Algorithm
In non-supervised data set, the importance of each feature is different. If the feature is setted with a proper weight, which can fully considers the lever of the influence on the cluster effect, then the clustering result will be improved. A feature evaluate function is proposed to obtain a set of feature weight vectors by minimizing the function, which is a multi-objective problem. So a fast and elitist multi-objective genetic algorithm is used to solve the problem and obtain the weight of feature. Finally, the weight of feature is introduced into the standard K-Means algorithm and the experiments on the UCI dataset show the validity of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信