使用卷积神经网络进行英语口语流利度评分

Hoon Chung, Y. Lee, Sung Joo Lee, J. Park
{"title":"使用卷积神经网络进行英语口语流利度评分","authors":"Hoon Chung, Y. Lee, Sung Joo Lee, J. Park","doi":"10.1109/ICSDA.2017.8384444","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spoken English fluency scoring using Convolutional Neural Network (CNN) to learn feature extraction and scoring model jointly from raw time-domain signal input. In general, automatic spoken English fluency scoring is composed feature extraction and a scoring model. Feature extraction is used to compute the feature vectors that are assumed to represent spoken English fluency, and the scoring model predicts the fluency score of an input feature vector. Although the conventional approach works well, there are issues regarding feature extraction and model parameter optimization. First, because the fluency features are computed based on human knowledge, some crucial representations that are included in a raw data corpus can be missed. Second, each parameter of the model is optimized separately, which can lead to suboptimal performance. To address these issues, we propose a CNN-based approach to extract fluency features directly from a raw data corpus without hand-crafted engineering and optimizes all model parameters jointly. The effectiveness of the proposed approach is evaluated using Korean-Spoken English Corpus.","PeriodicalId":255147,"journal":{"name":"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spoken English fluency scoring using convolutional neural networks\",\"authors\":\"Hoon Chung, Y. Lee, Sung Joo Lee, J. Park\",\"doi\":\"10.1109/ICSDA.2017.8384444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a spoken English fluency scoring using Convolutional Neural Network (CNN) to learn feature extraction and scoring model jointly from raw time-domain signal input. In general, automatic spoken English fluency scoring is composed feature extraction and a scoring model. Feature extraction is used to compute the feature vectors that are assumed to represent spoken English fluency, and the scoring model predicts the fluency score of an input feature vector. Although the conventional approach works well, there are issues regarding feature extraction and model parameter optimization. First, because the fluency features are computed based on human knowledge, some crucial representations that are included in a raw data corpus can be missed. Second, each parameter of the model is optimized separately, which can lead to suboptimal performance. To address these issues, we propose a CNN-based approach to extract fluency features directly from a raw data corpus without hand-crafted engineering and optimizes all model parameters jointly. The effectiveness of the proposed approach is evaluated using Korean-Spoken English Corpus.\",\"PeriodicalId\":255147,\"journal\":{\"name\":\"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSDA.2017.8384444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2017.8384444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于卷积神经网络(CNN)的英语口语流利度评分方法,该方法从原始时域信号输入中学习特征提取和评分模型。一般来说,英语口语流利度自动评分由特征提取和评分模型组成。特征提取用于计算表征英语口语流利度的特征向量,评分模型预测输入特征向量的流利度分数。尽管传统方法效果良好,但存在特征提取和模型参数优化等问题。首先,由于流畅性特征是基于人类知识计算的,因此可能会遗漏原始数据语料库中包含的一些关键表示。其次,模型的每个参数都是单独优化的,这可能导致性能次优。为了解决这些问题,我们提出了一种基于cnn的方法,直接从原始数据语料库中提取流畅性特征,而无需手工制作工程,并联合优化所有模型参数。使用韩语口语语料库对该方法的有效性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spoken English fluency scoring using convolutional neural networks
In this paper, we propose a spoken English fluency scoring using Convolutional Neural Network (CNN) to learn feature extraction and scoring model jointly from raw time-domain signal input. In general, automatic spoken English fluency scoring is composed feature extraction and a scoring model. Feature extraction is used to compute the feature vectors that are assumed to represent spoken English fluency, and the scoring model predicts the fluency score of an input feature vector. Although the conventional approach works well, there are issues regarding feature extraction and model parameter optimization. First, because the fluency features are computed based on human knowledge, some crucial representations that are included in a raw data corpus can be missed. Second, each parameter of the model is optimized separately, which can lead to suboptimal performance. To address these issues, we propose a CNN-based approach to extract fluency features directly from a raw data corpus without hand-crafted engineering and optimizes all model parameters jointly. The effectiveness of the proposed approach is evaluated using Korean-Spoken English Corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信