基于Web结构和内容聚类的Web历史主题图提取方法

M. Mase, S. Yamada
{"title":"基于Web结构和内容聚类的Web历史主题图提取方法","authors":"M. Mase, S. Yamada","doi":"10.1109/WI-IATW.2006.71","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a clustering method to extract topic maps from the Web browsing history. We improve the structure-based hierarchical clustering method using the contents similarity of the pages and the weight by the types of links and the hierarchical difference of the directories in which the pages are located. The topic maps show the topics that user has seen or not in Web browsing and the relationships between the topics. Using the Web browsing history, we experimentally extract the topic map and evaluate it","PeriodicalId":358971,"journal":{"name":"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extracting Topic Maps from Web Histories by Clustering with Web Structure and Contents\",\"authors\":\"M. Mase, S. Yamada\",\"doi\":\"10.1109/WI-IATW.2006.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a clustering method to extract topic maps from the Web browsing history. We improve the structure-based hierarchical clustering method using the contents similarity of the pages and the weight by the types of links and the hierarchical difference of the directories in which the pages are located. The topic maps show the topics that user has seen or not in Web browsing and the relationships between the topics. Using the Web browsing history, we experimentally extract the topic map and evaluate it\",\"PeriodicalId\":358971,\"journal\":{\"name\":\"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IATW.2006.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IATW.2006.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种从网页浏览历史中提取主题图的聚类方法。我们利用页面的内容相似度和页面所在目录的链接类型和层次差异的权重来改进基于结构的分层聚类方法。主题图显示用户在Web浏览中看到或没有看到的主题以及主题之间的关系。利用网页浏览历史,实验提取主题图并对其进行评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Topic Maps from Web Histories by Clustering with Web Structure and Contents
In this paper, we propose a clustering method to extract topic maps from the Web browsing history. We improve the structure-based hierarchical clustering method using the contents similarity of the pages and the weight by the types of links and the hierarchical difference of the directories in which the pages are located. The topic maps show the topics that user has seen or not in Web browsing and the relationships between the topics. Using the Web browsing history, we experimentally extract the topic map and evaluate it
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信