基于小波的盲图像反卷积的Kullback-Leibler散度方法

A. Seghouane, M. Hanif
{"title":"基于小波的盲图像反卷积的Kullback-Leibler散度方法","authors":"A. Seghouane, M. Hanif","doi":"10.1109/MLSP.2012.6349757","DOIUrl":null,"url":null,"abstract":"A new algorithm for wavelet-based blind image restoration is presented in this paper. It is obtained by defining an intermediate variable to characterize the original image. Both the original image and the additive noise are modeled by multivariate Gaussian process. The blurring process is specified by its point spread function, which is unknown. The original image and the blur are estimated by alternating minimization of the KullbackLeibler divergence between a model family of probability distributions defined using a linear image model and a desired family of probability distributions constrained to be concentrated on the observed data. The intermediate variable is used to introduce regularization in the algorithm. The algorithm presents the advantage to provide closed form expressions for the parameters to be updated and to converge only after few iterations. A simulation example that illustrates the effectiveness of the proposed algorithm is presented.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Kullback-Leibler divergence approach for wavelet-based blind image deconvolution\",\"authors\":\"A. Seghouane, M. Hanif\",\"doi\":\"10.1109/MLSP.2012.6349757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm for wavelet-based blind image restoration is presented in this paper. It is obtained by defining an intermediate variable to characterize the original image. Both the original image and the additive noise are modeled by multivariate Gaussian process. The blurring process is specified by its point spread function, which is unknown. The original image and the blur are estimated by alternating minimization of the KullbackLeibler divergence between a model family of probability distributions defined using a linear image model and a desired family of probability distributions constrained to be concentrated on the observed data. The intermediate variable is used to introduce regularization in the algorithm. The algorithm presents the advantage to provide closed form expressions for the parameters to be updated and to converge only after few iterations. A simulation example that illustrates the effectiveness of the proposed algorithm is presented.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于小波的图像盲恢复算法。它是通过定义一个中间变量来表征原始图像而得到的。原始图像和加性噪声均采用多元高斯过程建模。模糊过程由它的点扩散函数决定,这个函数是未知的。原始图像和模糊是通过交替最小化KullbackLeibler散度来估计的,这些散度是由线性图像模型定义的概率分布的模型族和被约束于观测数据的期望概率分布族之间的散度。中间变量用于引入正则化算法。该算法具有为待更新参数提供封闭表达式和迭代次数少收敛的优点。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Kullback-Leibler divergence approach for wavelet-based blind image deconvolution
A new algorithm for wavelet-based blind image restoration is presented in this paper. It is obtained by defining an intermediate variable to characterize the original image. Both the original image and the additive noise are modeled by multivariate Gaussian process. The blurring process is specified by its point spread function, which is unknown. The original image and the blur are estimated by alternating minimization of the KullbackLeibler divergence between a model family of probability distributions defined using a linear image model and a desired family of probability distributions constrained to be concentrated on the observed data. The intermediate variable is used to introduce regularization in the algorithm. The algorithm presents the advantage to provide closed form expressions for the parameters to be updated and to converge only after few iterations. A simulation example that illustrates the effectiveness of the proposed algorithm is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信