基于Cat图的混沌遗传算法及其在地震小波估计中的应用

F. Wang, Yongshou Dai, Shaoshui Wang
{"title":"基于Cat图的混沌遗传算法及其在地震小波估计中的应用","authors":"F. Wang, Yongshou Dai, Shaoshui Wang","doi":"10.1109/IWCFTA.2009.31","DOIUrl":null,"url":null,"abstract":"This paper proposes the chaos-genetic algorithm (CGA) based on the cat map in order to optimize a multidimensional and multimodal non-linear cost function for the seismic wavelet. The algorithm uses the initial sensitivity of the cat map to expand the scope of the search, and uses the ergodicity of the cat map to search the chaotic variables. Thus, reduces the data redundancy, maintains the diversity of population, and solves the problem of local optimum effectively. The performance of CGA is firstly verified by four test functions, and then applied to the seismic wavelet estimation. Theoretical analysis and numerical simulation demonstrate that CGA has better convergence speed and convergence performance.","PeriodicalId":279256,"journal":{"name":"2009 International Workshop on Chaos-Fractals Theories and Applications","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Chaos-Genetic Algorithm Based on the Cat Map and Its Application on Seismic Wavelet Estimation\",\"authors\":\"F. Wang, Yongshou Dai, Shaoshui Wang\",\"doi\":\"10.1109/IWCFTA.2009.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the chaos-genetic algorithm (CGA) based on the cat map in order to optimize a multidimensional and multimodal non-linear cost function for the seismic wavelet. The algorithm uses the initial sensitivity of the cat map to expand the scope of the search, and uses the ergodicity of the cat map to search the chaotic variables. Thus, reduces the data redundancy, maintains the diversity of population, and solves the problem of local optimum effectively. The performance of CGA is firstly verified by four test functions, and then applied to the seismic wavelet estimation. Theoretical analysis and numerical simulation demonstrate that CGA has better convergence speed and convergence performance.\",\"PeriodicalId\":279256,\"journal\":{\"name\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2009.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Chaos-Fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了优化地震小波的多维多模态非线性代价函数,提出了基于cat图的混沌遗传算法(CGA)。该算法利用猫图的初始灵敏度来扩大搜索范围,利用猫图的遍历性来搜索混沌变量。从而减少了数据冗余,保持了种群的多样性,有效地解决了局部最优问题。首先通过四个测试函数验证了CGA的性能,然后将其应用于地震小波估计。理论分析和数值仿真表明,CGA具有较好的收敛速度和收敛性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos-Genetic Algorithm Based on the Cat Map and Its Application on Seismic Wavelet Estimation
This paper proposes the chaos-genetic algorithm (CGA) based on the cat map in order to optimize a multidimensional and multimodal non-linear cost function for the seismic wavelet. The algorithm uses the initial sensitivity of the cat map to expand the scope of the search, and uses the ergodicity of the cat map to search the chaotic variables. Thus, reduces the data redundancy, maintains the diversity of population, and solves the problem of local optimum effectively. The performance of CGA is firstly verified by four test functions, and then applied to the seismic wavelet estimation. Theoretical analysis and numerical simulation demonstrate that CGA has better convergence speed and convergence performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信