优化肌电人机界面设计的特征通道子集选择

M. A. Oskoei, Huosheng Hu, J. Q. Gan
{"title":"优化肌电人机界面设计的特征通道子集选择","authors":"M. A. Oskoei, Huosheng Hu, J. Q. Gan","doi":"10.1504/IJBBR.2013.058708","DOIUrl":null,"url":null,"abstract":"This paper proposes a feature-channel subset selection method for obtaining an optimal subset of features and channels of myoelectric human-machine interface applied to classify upper limb’s motions using multi-channel myoelectric signals. It employs a multi-objective genetic algorithm as a search strategy and either data separability index or classification rate as an objective function. A wide range of features in time, frequency, and time-scale domains are examined, and a modification that reduces the bias of cardinality in the separability index is evaluated. The proposed method produces a compact subset of features and channels, which results in high accuracy by linear classifiers without a need of preliminary tailor-made adjustments.","PeriodicalId":375470,"journal":{"name":"International Journal of Biomechatronics and Biomedical Robotics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Feature-channel subset selection for optimising myoelectric human-machine interface design\",\"authors\":\"M. A. Oskoei, Huosheng Hu, J. Q. Gan\",\"doi\":\"10.1504/IJBBR.2013.058708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a feature-channel subset selection method for obtaining an optimal subset of features and channels of myoelectric human-machine interface applied to classify upper limb’s motions using multi-channel myoelectric signals. It employs a multi-objective genetic algorithm as a search strategy and either data separability index or classification rate as an objective function. A wide range of features in time, frequency, and time-scale domains are examined, and a modification that reduces the bias of cardinality in the separability index is evaluated. The proposed method produces a compact subset of features and channels, which results in high accuracy by linear classifiers without a need of preliminary tailor-made adjustments.\",\"PeriodicalId\":375470,\"journal\":{\"name\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBBR.2013.058708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomechatronics and Biomedical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBBR.2013.058708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种特征通道子集选择方法,以获得最优的肌电人机界面特征和通道子集,应用于多通道肌电信号对上肢运动进行分类。该算法采用多目标遗传算法作为搜索策略,以数据可分性指标或分类率为目标函数。广泛的特征在时间,频率和时间尺度域进行了检查,并修改,减少基数的偏差在可分性指数进行了评估。提出的方法产生了一个紧凑的特征和通道子集,这使得线性分类器在不需要预先定制调整的情况下具有很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature-channel subset selection for optimising myoelectric human-machine interface design
This paper proposes a feature-channel subset selection method for obtaining an optimal subset of features and channels of myoelectric human-machine interface applied to classify upper limb’s motions using multi-channel myoelectric signals. It employs a multi-objective genetic algorithm as a search strategy and either data separability index or classification rate as an objective function. A wide range of features in time, frequency, and time-scale domains are examined, and a modification that reduces the bias of cardinality in the separability index is evaluated. The proposed method produces a compact subset of features and channels, which results in high accuracy by linear classifiers without a need of preliminary tailor-made adjustments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信