改进1900年至2011年海平面变化的估计

B. Hamlington, R. Leben, K.‐Y. Kim
{"title":"改进1900年至2011年海平面变化的估计","authors":"B. Hamlington, R. Leben, K.‐Y. Kim","doi":"10.1109/OCEANS.2012.6405061","DOIUrl":null,"url":null,"abstract":"A new method for reconstructing sea level involving cyclostationary empirical orthogonal functions (CSEOFs) is presented. The focus is on how other ocean observations such as sea surface temperature can be leveraged to create an improved reconstructed sea level dataset spanning the time period from 1900 to present. Basis functions are computed using satellite measurements of sea surface temperature, and using a simple regression technique, these basis functions are transformed to represent a similar temporal evolution to corresponding satellite altimeter-derived sea level basis functions. The resulting sea level and sea surface temperature basis functions are fit to tide gauge data and historical sea surface temperature data, respectively, to produce a reconstructed sea level dataset spanning the period from 1900 to present. We present a detailed explanation of this technique and demonstrate how it can be used for improved climate monitoring over the last century.","PeriodicalId":434023,"journal":{"name":"2012 Oceans","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving estimates of sea level variability from 1900 to 2011\",\"authors\":\"B. Hamlington, R. Leben, K.‐Y. Kim\",\"doi\":\"10.1109/OCEANS.2012.6405061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for reconstructing sea level involving cyclostationary empirical orthogonal functions (CSEOFs) is presented. The focus is on how other ocean observations such as sea surface temperature can be leveraged to create an improved reconstructed sea level dataset spanning the time period from 1900 to present. Basis functions are computed using satellite measurements of sea surface temperature, and using a simple regression technique, these basis functions are transformed to represent a similar temporal evolution to corresponding satellite altimeter-derived sea level basis functions. The resulting sea level and sea surface temperature basis functions are fit to tide gauge data and historical sea surface temperature data, respectively, to produce a reconstructed sea level dataset spanning the period from 1900 to present. We present a detailed explanation of this technique and demonstrate how it can be used for improved climate monitoring over the last century.\",\"PeriodicalId\":434023,\"journal\":{\"name\":\"2012 Oceans\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2012.6405061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2012.6405061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用周期平稳经验正交函数(CSEOFs)重建海平面的新方法。重点是如何利用其他海洋观测数据,如海面温度,来创建一个改进的重建海平面数据集,时间跨度从1900年到现在。利用卫星测量的海面温度计算基函数,并使用简单的回归技术,将这些基函数转换为与相应的卫星高度计衍生的海平面基函数相似的时间演变。所得的海平面和海温基函数分别与验潮仪数据和历史海温数据拟合,得到1900年至今的重建海平面数据集。我们对这项技术进行了详细的解释,并演示了如何将其用于改进上个世纪的气候监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving estimates of sea level variability from 1900 to 2011
A new method for reconstructing sea level involving cyclostationary empirical orthogonal functions (CSEOFs) is presented. The focus is on how other ocean observations such as sea surface temperature can be leveraged to create an improved reconstructed sea level dataset spanning the time period from 1900 to present. Basis functions are computed using satellite measurements of sea surface temperature, and using a simple regression technique, these basis functions are transformed to represent a similar temporal evolution to corresponding satellite altimeter-derived sea level basis functions. The resulting sea level and sea surface temperature basis functions are fit to tide gauge data and historical sea surface temperature data, respectively, to produce a reconstructed sea level dataset spanning the period from 1900 to present. We present a detailed explanation of this technique and demonstrate how it can be used for improved climate monitoring over the last century.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信