{"title":"双行星行星齿轮组的载荷分配模型","authors":"Yong Hu, David Talbot, A. Kahraman","doi":"10.1115/detc2019-98512","DOIUrl":null,"url":null,"abstract":"\n In this paper, a load distribution model for a double-planet planetary gear set is developed by modifying an existing single-planet planetary gear set model [1] to account for an additional planet to planet gear mesh and their impact on phasing relationship among different sun-planet, planet-planet and planet-ring gear meshes. Similar to the single-planet planetary gear set model, the double-planet planetary gear set model accounts for effects of various component and system level variations such as supporting conditions, gear tooth modifications, manufacturing errors and kinematic configurations. The double-planet planetary gear load distribution model is derived for both rigid and flexible ring gear rim, while only parametric studies for a rigid ring gear rim is presented in this paper to demonstrate load distribution characteristics of double-planet planetary gear sets with different planet bearing stiffness and combination of various types of manufacturing errors, including pin hole position error and runout errors.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Load Distribution Model for Double-Planet Planetary Gear Sets\",\"authors\":\"Yong Hu, David Talbot, A. Kahraman\",\"doi\":\"10.1115/detc2019-98512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a load distribution model for a double-planet planetary gear set is developed by modifying an existing single-planet planetary gear set model [1] to account for an additional planet to planet gear mesh and their impact on phasing relationship among different sun-planet, planet-planet and planet-ring gear meshes. Similar to the single-planet planetary gear set model, the double-planet planetary gear set model accounts for effects of various component and system level variations such as supporting conditions, gear tooth modifications, manufacturing errors and kinematic configurations. The double-planet planetary gear load distribution model is derived for both rigid and flexible ring gear rim, while only parametric studies for a rigid ring gear rim is presented in this paper to demonstrate load distribution characteristics of double-planet planetary gear sets with different planet bearing stiffness and combination of various types of manufacturing errors, including pin hole position error and runout errors.\",\"PeriodicalId\":159554,\"journal\":{\"name\":\"Volume 10: 2019 International Power Transmission and Gearing Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: 2019 International Power Transmission and Gearing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 2019 International Power Transmission and Gearing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Load Distribution Model for Double-Planet Planetary Gear Sets
In this paper, a load distribution model for a double-planet planetary gear set is developed by modifying an existing single-planet planetary gear set model [1] to account for an additional planet to planet gear mesh and their impact on phasing relationship among different sun-planet, planet-planet and planet-ring gear meshes. Similar to the single-planet planetary gear set model, the double-planet planetary gear set model accounts for effects of various component and system level variations such as supporting conditions, gear tooth modifications, manufacturing errors and kinematic configurations. The double-planet planetary gear load distribution model is derived for both rigid and flexible ring gear rim, while only parametric studies for a rigid ring gear rim is presented in this paper to demonstrate load distribution characteristics of double-planet planetary gear sets with different planet bearing stiffness and combination of various types of manufacturing errors, including pin hole position error and runout errors.