利用声波后向散射回波波形进行海底分类——人工神经网络的应用

B. Chakraborty, V. Mahale, G. Navelkar, R. Desai
{"title":"利用声波后向散射回波波形进行海底分类——人工神经网络的应用","authors":"B. Chakraborty, V. Mahale, G. Navelkar, R. Desai","doi":"10.1109/OCEANSAP.2006.4393981","DOIUrl":null,"url":null,"abstract":"In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of self organizing feature map (SOFM) and linear vector quantization (LVQ1). Currently acquired echo-waveform data acquired using single beam echo-sounder from twelve seafloor sediment locations from central part of the western continental shelf of India is analyzed and performance of the classifier is presented in this paper.","PeriodicalId":268341,"journal":{"name":"OCEANS 2006 - Asia Pacific","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seafloor Classification Using Acoustic Backscatter Echo-waveform - Artificial Neural Network Applications\",\"authors\":\"B. Chakraborty, V. Mahale, G. Navelkar, R. Desai\",\"doi\":\"10.1109/OCEANSAP.2006.4393981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of self organizing feature map (SOFM) and linear vector quantization (LVQ1). Currently acquired echo-waveform data acquired using single beam echo-sounder from twelve seafloor sediment locations from central part of the western continental shelf of India is analyzed and performance of the classifier is presented in this paper.\",\"PeriodicalId\":268341,\"journal\":{\"name\":\"OCEANS 2006 - Asia Pacific\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2006 - Asia Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSAP.2006.4393981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2006 - Asia Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSAP.2006.4393981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文设计了基于人工神经网络(ANN)的海底分类系统。本文采用的人工神经网络架构是自组织特征映射(SOFM)和线性向量量化(LVQ1)的结合。本文分析了目前在印度西部大陆架中部12个海底沉积物位置用单波束测深仪采集的回波波形数据,并介绍了该分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seafloor Classification Using Acoustic Backscatter Echo-waveform - Artificial Neural Network Applications
In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of self organizing feature map (SOFM) and linear vector quantization (LVQ1). Currently acquired echo-waveform data acquired using single beam echo-sounder from twelve seafloor sediment locations from central part of the western continental shelf of India is analyzed and performance of the classifier is presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信