脉冲噪声的实值DOA估计

Mengya Guo, Hekun Shang, Zheng Cao
{"title":"脉冲噪声的实值DOA估计","authors":"Mengya Guo, Hekun Shang, Zheng Cao","doi":"10.1109/ICEICT51264.2020.9334241","DOIUrl":null,"url":null,"abstract":"Aiming at DOA estimation under impulsive noise, this paper propose a real-valued sparse Bayesian learning (SBL) method. A unitary transformation is utilized to convert complex-valued direction-of-arrival (DOA) estimation into real ones. The variational Bayesian inference (VBI) technique is then adopted to perform the Bayesian inference with such real-valued prior. Consequently, the computational complexity of this Bayesian inference is significantly reduced. Simulation outcomes demonstrate the great robust performance and low computational load of the new method.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Valued DOA Estimation for Impulsive Noise\",\"authors\":\"Mengya Guo, Hekun Shang, Zheng Cao\",\"doi\":\"10.1109/ICEICT51264.2020.9334241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at DOA estimation under impulsive noise, this paper propose a real-valued sparse Bayesian learning (SBL) method. A unitary transformation is utilized to convert complex-valued direction-of-arrival (DOA) estimation into real ones. The variational Bayesian inference (VBI) technique is then adopted to perform the Bayesian inference with such real-valued prior. Consequently, the computational complexity of this Bayesian inference is significantly reduced. Simulation outcomes demonstrate the great robust performance and low computational load of the new method.\",\"PeriodicalId\":124337,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT51264.2020.9334241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用一元变换将复值到达方向(DOA)估计转化为实数估计。然后采用变分贝叶斯推理(VBI)技术对该实值先验进行贝叶斯推理。因此,这种贝叶斯推理的计算复杂度大大降低。仿真结果表明,该方法具有良好的鲁棒性和较低的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Valued DOA Estimation for Impulsive Noise
Aiming at DOA estimation under impulsive noise, this paper propose a real-valued sparse Bayesian learning (SBL) method. A unitary transformation is utilized to convert complex-valued direction-of-arrival (DOA) estimation into real ones. The variational Bayesian inference (VBI) technique is then adopted to perform the Bayesian inference with such real-valued prior. Consequently, the computational complexity of this Bayesian inference is significantly reduced. Simulation outcomes demonstrate the great robust performance and low computational load of the new method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信