树中2保护节点数的方差

Jeffrey Gaither, Mark Daniel Ward
{"title":"树中2保护节点数的方差","authors":"Jeffrey Gaither, Mark Daniel Ward","doi":"10.1137/1.9781611973037.6","DOIUrl":null,"url":null,"abstract":"We derive an asymptotic expression for the variance of the number of 2-protected nodes (neither leaves nor parents of leaves) in a binary trie. In an unbiased trie on n leaves we find, for example, that the variance is approximately: 934n plus small fluctuations (also of order n); but our result covers the general (biased) case as well. Our proof relies on the asymptotic similarities between a trie and its Poissonized counterpart, whose behavior we glean via the Mellin transform and singularity analysis.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Variance of the Number of 2-Protected Nodes in a Trie\",\"authors\":\"Jeffrey Gaither, Mark Daniel Ward\",\"doi\":\"10.1137/1.9781611973037.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an asymptotic expression for the variance of the number of 2-protected nodes (neither leaves nor parents of leaves) in a binary trie. In an unbiased trie on n leaves we find, for example, that the variance is approximately: 934n plus small fluctuations (also of order n); but our result covers the general (biased) case as well. Our proof relies on the asymptotic similarities between a trie and its Poissonized counterpart, whose behavior we glean via the Mellin transform and singularity analysis.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973037.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973037.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们导出了二叉树中2保护节点(既不是叶节点也不是叶节点的父节点)数目方差的渐近表达式。例如,在n个叶上的无偏尝试中,我们发现方差近似为:934n加上小波动(也是n阶);但我们的结果也涵盖了一般(有偏见的)情况。我们的证明依赖于一个trie和它的泊松化对应体之间的渐近相似性,其行为我们通过Mellin变换和奇点分析收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Variance of the Number of 2-Protected Nodes in a Trie
We derive an asymptotic expression for the variance of the number of 2-protected nodes (neither leaves nor parents of leaves) in a binary trie. In an unbiased trie on n leaves we find, for example, that the variance is approximately: 934n plus small fluctuations (also of order n); but our result covers the general (biased) case as well. Our proof relies on the asymptotic similarities between a trie and its Poissonized counterpart, whose behavior we glean via the Mellin transform and singularity analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信