{"title":"二维Ising模型居里温度的神经网络预测","authors":"A. Korol, V. Kapitan","doi":"10.47910/femj202105","DOIUrl":null,"url":null,"abstract":"The authors describe a method for determining the critical point of a second-order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training were obtained using Metropolis algorithm for different temperatures. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from 0.1 to 5.0 (in dimensionless units) and determined (the Curie temperature T_c). The accuracy of the obtained results was estimated relative to the Onsager solution for a flat lattice of Ising spins.","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network for Prediction of Curie Temperature of Two-Dimensional Ising Model\",\"authors\":\"A. Korol, V. Kapitan\",\"doi\":\"10.47910/femj202105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a method for determining the critical point of a second-order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training were obtained using Metropolis algorithm for different temperatures. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from 0.1 to 5.0 (in dimensionless units) and determined (the Curie temperature T_c). The accuracy of the obtained results was estimated relative to the Onsager solution for a flat lattice of Ising spins.\",\"PeriodicalId\":388451,\"journal\":{\"name\":\"Dal'nevostochnyi Matematicheskii Zhurnal\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dal'nevostochnyi Matematicheskii Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47910/femj202105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Network for Prediction of Curie Temperature of Two-Dimensional Ising Model
The authors describe a method for determining the critical point of a second-order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training were obtained using Metropolis algorithm for different temperatures. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from 0.1 to 5.0 (in dimensionless units) and determined (the Curie temperature T_c). The accuracy of the obtained results was estimated relative to the Onsager solution for a flat lattice of Ising spins.