一般二维二次自治系统到二维洛伦兹型系统的转换

C. Hua, Guanrong Chen
{"title":"一般二维二次自治系统到二维洛伦兹型系统的转换","authors":"C. Hua, Guanrong Chen","doi":"10.1109/IWCFTA.2009.66","DOIUrl":null,"url":null,"abstract":"Under three necessary conditions for preserving the essential qualitative properties of the 3D Lorenz system, a general 2D quadratic autonomous system is converted to a 2D Lorenz-type system (2DLTS). A canonical form of the 2DLTS is derived with aid of a normalization technique. It is found that the 2DLTS can be converted to the 2D Duffing oscillator model under certain conditions. Furthermore, it is shown that the 2DLTS undergoes pitchfork bifurcation and Hopf bifurcation. Finally, approximate periodic solutions of both the 2DLTS near the Hopf bifurcation point and a time-periodically forced system are obtained.","PeriodicalId":279256,"journal":{"name":"2009 International Workshop on Chaos-Fractals Theories and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Converting a General 2D Quadratic Autonomous System to a 2D Lorenz-Type System\",\"authors\":\"C. Hua, Guanrong Chen\",\"doi\":\"10.1109/IWCFTA.2009.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under three necessary conditions for preserving the essential qualitative properties of the 3D Lorenz system, a general 2D quadratic autonomous system is converted to a 2D Lorenz-type system (2DLTS). A canonical form of the 2DLTS is derived with aid of a normalization technique. It is found that the 2DLTS can be converted to the 2D Duffing oscillator model under certain conditions. Furthermore, it is shown that the 2DLTS undergoes pitchfork bifurcation and Hopf bifurcation. Finally, approximate periodic solutions of both the 2DLTS near the Hopf bifurcation point and a time-periodically forced system are obtained.\",\"PeriodicalId\":279256,\"journal\":{\"name\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2009.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Chaos-Fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2009.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在保留三维Lorenz系统本质定性性质的三个必要条件下,将一般二维二次自治系统转化为二维Lorenz型系统(2DLTS)。借助规范化技术推导出2DLTS的规范形式。研究发现,在一定条件下,2DLTS可以转换为二维Duffing振荡器模型。结果表明,2dlt存在干草叉分叉和Hopf分叉。最后,得到了Hopf分岔点附近2DLTS和时间周期强迫系统的近似周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Converting a General 2D Quadratic Autonomous System to a 2D Lorenz-Type System
Under three necessary conditions for preserving the essential qualitative properties of the 3D Lorenz system, a general 2D quadratic autonomous system is converted to a 2D Lorenz-type system (2DLTS). A canonical form of the 2DLTS is derived with aid of a normalization technique. It is found that the 2DLTS can be converted to the 2D Duffing oscillator model under certain conditions. Furthermore, it is shown that the 2DLTS undergoes pitchfork bifurcation and Hopf bifurcation. Finally, approximate periodic solutions of both the 2DLTS near the Hopf bifurcation point and a time-periodically forced system are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信