拟中心Banach代数的Tauberian定理

Sin-Ei Takahasi
{"title":"拟中心Banach代数的Tauberian定理","authors":"Sin-Ei Takahasi","doi":"10.5036/BFSIU1968.18.55","DOIUrl":null,"url":null,"abstract":"Let A be a semisimple quasicentral Banach algebra with bounded approximate identity and suppose the center Z(A) of A is completely regular. We denote by suppB(x) the hull-kernel closure of {P∈Prim B: x〓P} whenever B is an algebra with structure space Prim B and x∈B. suppB(x) is called the support of x. Also denote by B00 the set of all x∈B such that suppB(x) is quasicompact, namely it satisfies the Borel-Lebesgue axiom without necessarily being Hausdorff. Let Φ be Dixmier's representation of Z(M(A)), the central double centralizer algebra of A (see [4] for definition) and Z00(A) the set of all z∈Z(A) such that supp (ΦLz) is quasicompact. Here Lz(x)=zx, x∈A and supp (ΦLz) is the hull-kernel closure of {P∈Prim A: ΦLz(P)≠0}. Actually Z00(A)=A00∩Z(A)⊂(Z(A))00 (cf. [5, Lemma 3.4 and 3.7]). However Z00(A)=(Z(A))00 was left open in [5]. The following result asserts that this is true.","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on Tauberian Theorem for Quasicentral Banach Algebras\",\"authors\":\"Sin-Ei Takahasi\",\"doi\":\"10.5036/BFSIU1968.18.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A be a semisimple quasicentral Banach algebra with bounded approximate identity and suppose the center Z(A) of A is completely regular. We denote by suppB(x) the hull-kernel closure of {P∈Prim B: x〓P} whenever B is an algebra with structure space Prim B and x∈B. suppB(x) is called the support of x. Also denote by B00 the set of all x∈B such that suppB(x) is quasicompact, namely it satisfies the Borel-Lebesgue axiom without necessarily being Hausdorff. Let Φ be Dixmier's representation of Z(M(A)), the central double centralizer algebra of A (see [4] for definition) and Z00(A) the set of all z∈Z(A) such that supp (ΦLz) is quasicompact. Here Lz(x)=zx, x∈A and supp (ΦLz) is the hull-kernel closure of {P∈Prim A: ΦLz(P)≠0}. Actually Z00(A)=A00∩Z(A)⊂(Z(A))00 (cf. [5, Lemma 3.4 and 3.7]). However Z00(A)=(Z(A))00 was left open in [5]. The following result asserts that this is true.\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.18.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.18.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设A是具有有界近似恒等式的半简单拟中心巴拿赫代数,并设A的中心Z(A)是完全正则的。当B是结构空间为Prim B且x∈B的代数时,我们用supb (x)表示{P∈Prim B: x〓P}的壳核闭包。suppB(x)称为x的支持。也用B00表示所有x∈B的集合,使得suppB(x)是拟紧的,即它满足Borel-Lebesgue公理而不一定是Hausdorff公理。设Φ为Dixmier对Z(M(A))的表示,Z(M(A))是A的中心双中心化代数(定义见[4]),Z00(A)是所有Z∈Z(A)的集合,使得supp (ΦLz)是准紧的。其中Lz(x)=zx, x∈A, supp (ΦLz)是{P∈Prim A: ΦLz(P)≠0}的壳核闭包。实际上Z00 (A) = A00∩Z (A)⊂(Z (A)) 00 (cf。[5,引理3.4和3.7])。然而Z00(A)=(Z(A))00在[5]中是开放的。下面的结果证明这是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on Tauberian Theorem for Quasicentral Banach Algebras
Let A be a semisimple quasicentral Banach algebra with bounded approximate identity and suppose the center Z(A) of A is completely regular. We denote by suppB(x) the hull-kernel closure of {P∈Prim B: x〓P} whenever B is an algebra with structure space Prim B and x∈B. suppB(x) is called the support of x. Also denote by B00 the set of all x∈B such that suppB(x) is quasicompact, namely it satisfies the Borel-Lebesgue axiom without necessarily being Hausdorff. Let Φ be Dixmier's representation of Z(M(A)), the central double centralizer algebra of A (see [4] for definition) and Z00(A) the set of all z∈Z(A) such that supp (ΦLz) is quasicompact. Here Lz(x)=zx, x∈A and supp (ΦLz) is the hull-kernel closure of {P∈Prim A: ΦLz(P)≠0}. Actually Z00(A)=A00∩Z(A)⊂(Z(A))00 (cf. [5, Lemma 3.4 and 3.7]). However Z00(A)=(Z(A))00 was left open in [5]. The following result asserts that this is true.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信