Demusa:多模态情感分析演示

Soyeon Hong, Jeonghoon Kim, Donghoon Lee, Hyunsouk Cho
{"title":"Demusa:多模态情感分析演示","authors":"Soyeon Hong, Jeonghoon Kim, Donghoon Lee, Hyunsouk Cho","doi":"10.1109/ICMEW56448.2022.9859289","DOIUrl":null,"url":null,"abstract":"Recently, a lot of Multimodal Sentiment Analysis (MSA) models appeared to understanding opinions in multimedia. To accelerate MSA researches, CMU-MOSI and CMU-MOSEI were released as the open-datasets. However, it is hard to observe the input data elements in detail and analyze the prediction model results with each video clip for qualitative evaluation. For these reasons, this paper suggests DeMuSA, demo for multimodal sentiment analysis to explore raw data instance and compare prediction models by utterance-level.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demusa: Demo for Multimodal Sentiment Analysis\",\"authors\":\"Soyeon Hong, Jeonghoon Kim, Donghoon Lee, Hyunsouk Cho\",\"doi\":\"10.1109/ICMEW56448.2022.9859289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a lot of Multimodal Sentiment Analysis (MSA) models appeared to understanding opinions in multimedia. To accelerate MSA researches, CMU-MOSI and CMU-MOSEI were released as the open-datasets. However, it is hard to observe the input data elements in detail and analyze the prediction model results with each video clip for qualitative evaluation. For these reasons, this paper suggests DeMuSA, demo for multimodal sentiment analysis to explore raw data instance and compare prediction models by utterance-level.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,出现了许多多模态情感分析(MSA)模型来理解多媒体中的观点。为了加速MSA研究,CMU-MOSI和CMU-MOSEI作为开放数据集发布。然而,很难对输入的数据元素进行详细的观察,并对每个视频片段的预测模型结果进行定性评价。基于这些原因,本文建议使用DeMuSA, demo进行多模态情感分析,探索原始数据实例,并从话语层面比较预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demusa: Demo for Multimodal Sentiment Analysis
Recently, a lot of Multimodal Sentiment Analysis (MSA) models appeared to understanding opinions in multimedia. To accelerate MSA researches, CMU-MOSI and CMU-MOSEI were released as the open-datasets. However, it is hard to observe the input data elements in detail and analyze the prediction model results with each video clip for qualitative evaluation. For these reasons, this paper suggests DeMuSA, demo for multimodal sentiment analysis to explore raw data instance and compare prediction models by utterance-level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信