改进的形状上下文在线快速识别算法——在移动车辆行人检测中的应用

Min Wang, Jianqing Wang, Hong Qiao, Xianbin Cao
{"title":"改进的形状上下文在线快速识别算法——在移动车辆行人检测中的应用","authors":"Min Wang, Jianqing Wang, Hong Qiao, Xianbin Cao","doi":"10.1109/IVS.2009.5164464","DOIUrl":null,"url":null,"abstract":"Shape Context algorithm is a recently proposed good method for object recognition. It is robust under small geometrical distortions and occlusion, invariant under scaling, translation, and change of illumination. However, because of its computational complexity, this algorithm is not suitable for online recognition. In this paper, we proposed an improved Shape Context algorithm which introduces an optimal hierarchical structure and gives new reference points selection criteria. Compared with the original Shape Context algorithm, the improved algorithm keeps the recognition accuracy and reduces the computational cost greatly. The good experimental results reveal that, this new algorithm can be applied to the pedestrian detection system online, which is an important research topic in intelligent transportation.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Shape Context algorithm for online fast recognition -an application in pedestrian detection from a moving vehicle\",\"authors\":\"Min Wang, Jianqing Wang, Hong Qiao, Xianbin Cao\",\"doi\":\"10.1109/IVS.2009.5164464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape Context algorithm is a recently proposed good method for object recognition. It is robust under small geometrical distortions and occlusion, invariant under scaling, translation, and change of illumination. However, because of its computational complexity, this algorithm is not suitable for online recognition. In this paper, we proposed an improved Shape Context algorithm which introduces an optimal hierarchical structure and gives new reference points selection criteria. Compared with the original Shape Context algorithm, the improved algorithm keeps the recognition accuracy and reduces the computational cost greatly. The good experimental results reveal that, this new algorithm can be applied to the pedestrian detection system online, which is an important research topic in intelligent transportation.\",\"PeriodicalId\":396749,\"journal\":{\"name\":\"2009 IEEE Intelligent Vehicles Symposium\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2009.5164464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

形状上下文算法是近年来提出的一种很好的物体识别方法。它在小的几何畸变和遮挡下具有鲁棒性,在缩放、平移和光照变化下具有不变性。但由于计算量大,该算法不适合在线识别。本文提出了一种改进的形状上下文算法,该算法引入了最优层次结构,并给出了新的参考点选择准则。与原形状上下文算法相比,改进算法在保持识别精度的同时大大降低了计算量。良好的实验结果表明,该算法可以应用于行人在线检测系统,这是智能交通领域的一个重要研究课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Shape Context algorithm for online fast recognition -an application in pedestrian detection from a moving vehicle
Shape Context algorithm is a recently proposed good method for object recognition. It is robust under small geometrical distortions and occlusion, invariant under scaling, translation, and change of illumination. However, because of its computational complexity, this algorithm is not suitable for online recognition. In this paper, we proposed an improved Shape Context algorithm which introduces an optimal hierarchical structure and gives new reference points selection criteria. Compared with the original Shape Context algorithm, the improved algorithm keeps the recognition accuracy and reduces the computational cost greatly. The good experimental results reveal that, this new algorithm can be applied to the pedestrian detection system online, which is an important research topic in intelligent transportation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信