标准遗传规划的自监督策略性能分析

Nuno M. Rodrigues, J. Almeida, Sara Silva
{"title":"标准遗传规划的自监督策略性能分析","authors":"Nuno M. Rodrigues, J. Almeida, Sara Silva","doi":"10.1145/3583133.3590748","DOIUrl":null,"url":null,"abstract":"Self-supervised learning (SSL) methods have been widely used to train deep learning models for computer vision and natural language processing domains. They leverage large amounts of unlabeled data to help pretrain models by learning patterns implicit in the data. Recently, new SSL techniques for tabular data have been developed, using new pretext tasks that typically aim to reconstruct a corrupted input sample and yielding models which are, ideally, robust feature transforms. In this paper, we pose the research question of whether genetic programming is capable of leveraging data processed using SSL methods to improve its performance. We test this hypothesis by assuming different amounts of labeled data on seven different datasets (five OpenML benchmarking datasets and two real-world datasets). The obtained results show that in almost all problems, standard genetic programming is not able to capitalize on the learned representations, producing results equal to or worse than using the labeled partitions.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Self-Supervised Strategies for Standard Genetic Programming\",\"authors\":\"Nuno M. Rodrigues, J. Almeida, Sara Silva\",\"doi\":\"10.1145/3583133.3590748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-supervised learning (SSL) methods have been widely used to train deep learning models for computer vision and natural language processing domains. They leverage large amounts of unlabeled data to help pretrain models by learning patterns implicit in the data. Recently, new SSL techniques for tabular data have been developed, using new pretext tasks that typically aim to reconstruct a corrupted input sample and yielding models which are, ideally, robust feature transforms. In this paper, we pose the research question of whether genetic programming is capable of leveraging data processed using SSL methods to improve its performance. We test this hypothesis by assuming different amounts of labeled data on seven different datasets (five OpenML benchmarking datasets and two real-world datasets). The obtained results show that in almost all problems, standard genetic programming is not able to capitalize on the learned representations, producing results equal to or worse than using the labeled partitions.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3590748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自监督学习方法已被广泛应用于计算机视觉和自然语言处理领域的深度学习模型训练。他们利用大量未标记的数据,通过学习数据中隐含的模式来帮助预训练模型。最近,针对表格数据开发了新的SSL技术,使用新的借口任务,通常旨在重建损坏的输入样本并产生理想的鲁棒特征转换模型。在本文中,我们提出了一个研究问题,即遗传规划是否能够利用使用SSL方法处理的数据来提高其性能。我们通过在七个不同的数据集(五个OpenML基准数据集和两个真实数据集)上假设不同数量的标记数据来测试这个假设。得到的结果表明,在几乎所有问题中,标准遗传规划都不能利用学习到的表示,产生的结果等于或不如使用标记分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Self-Supervised Strategies for Standard Genetic Programming
Self-supervised learning (SSL) methods have been widely used to train deep learning models for computer vision and natural language processing domains. They leverage large amounts of unlabeled data to help pretrain models by learning patterns implicit in the data. Recently, new SSL techniques for tabular data have been developed, using new pretext tasks that typically aim to reconstruct a corrupted input sample and yielding models which are, ideally, robust feature transforms. In this paper, we pose the research question of whether genetic programming is capable of leveraging data processed using SSL methods to improve its performance. We test this hypothesis by assuming different amounts of labeled data on seven different datasets (five OpenML benchmarking datasets and two real-world datasets). The obtained results show that in almost all problems, standard genetic programming is not able to capitalize on the learned representations, producing results equal to or worse than using the labeled partitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信