{"title":"轴的模空间上的绝对sl_2作用","authors":"N. Addington, R. Takahashi","doi":"10.1090/tran/8779","DOIUrl":null,"url":null,"abstract":"We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman. We show that these sequences can be given the structure of a geometric categorical sl_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A categorical sl_2 action on some moduli spaces of sheaves\",\"authors\":\"N. Addington, R. Takahashi\",\"doi\":\"10.1090/tran/8779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman. We show that these sequences can be given the structure of a geometric categorical sl_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A categorical sl_2 action on some moduli spaces of sheaves
We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman. We show that these sequences can be given the structure of a geometric categorical sl_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.