通过系统生成代理聚类数据集支持迭代虚拟现实分析设计和评估

S. Tadeja, P. Langdon, P. Kristensson
{"title":"通过系统生成代理聚类数据集支持迭代虚拟现实分析设计和评估","authors":"S. Tadeja, P. Langdon, P. Kristensson","doi":"10.1109/ismar52148.2021.00054","DOIUrl":null,"url":null,"abstract":"Virtual Reality (VR) is a promising technology platform for immersive visual analytics. However, the design space of VR analytics interface design is vast and difficult to explore using traditional A/B comparisons in formal or informal controlled experiments— a fundamental part of an iterative design process. A key factor that complicates such comparisons is the dataset. Exposing participants to the same dataset in all conditions introduces an unavoidable learning effect. On the other hand, using different datasets for all experimental conditions introduces the dataset itself as an uncontrolled variable, which reduces internal validity to an unacceptable degree. In this paper, we propose to rectify this problem by introducing a generative process for synthesizing clustered datasets for VR analytics experiments. This process generates datasets that are distinct while simultaneously allowing systematic comparisons in experiments. A key advantage is that these datasets can then be used in iterative design processes. In a two-part experiment, we show the validity of the generative process and demonstrate how new insights in VR-based visual analytics can be gained using synthetic datasets.","PeriodicalId":395413,"journal":{"name":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supporting Iterative Virtual Reality Analytics Design and Evaluation by Systematic Generation of Surrogate Clustered Datasets\",\"authors\":\"S. Tadeja, P. Langdon, P. Kristensson\",\"doi\":\"10.1109/ismar52148.2021.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual Reality (VR) is a promising technology platform for immersive visual analytics. However, the design space of VR analytics interface design is vast and difficult to explore using traditional A/B comparisons in formal or informal controlled experiments— a fundamental part of an iterative design process. A key factor that complicates such comparisons is the dataset. Exposing participants to the same dataset in all conditions introduces an unavoidable learning effect. On the other hand, using different datasets for all experimental conditions introduces the dataset itself as an uncontrolled variable, which reduces internal validity to an unacceptable degree. In this paper, we propose to rectify this problem by introducing a generative process for synthesizing clustered datasets for VR analytics experiments. This process generates datasets that are distinct while simultaneously allowing systematic comparisons in experiments. A key advantage is that these datasets can then be used in iterative design processes. In a two-part experiment, we show the validity of the generative process and demonstrate how new insights in VR-based visual analytics can be gained using synthetic datasets.\",\"PeriodicalId\":395413,\"journal\":{\"name\":\"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ismar52148.2021.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismar52148.2021.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虚拟现实(VR)是一个很有前途的沉浸式视觉分析技术平台。然而,VR分析界面设计的设计空间是巨大的,很难在正式或非正式的控制实验中使用传统的A/B比较来探索——这是迭代设计过程的基本部分。使这种比较复杂化的一个关键因素是数据集。将参与者暴露在所有条件下的相同数据集会引入不可避免的学习效应。另一方面,在所有实验条件下使用不同的数据集将数据集本身作为一个不受控制的变量引入,这将内部有效性降低到不可接受的程度。在本文中,我们建议通过引入一个生成过程来综合虚拟现实分析实验的聚类数据集来纠正这个问题。这个过程产生了不同的数据集,同时允许在实验中进行系统的比较。一个关键的优势是,这些数据集可以在迭代设计过程中使用。在两个部分的实验中,我们展示了生成过程的有效性,并演示了如何使用合成数据集获得基于vr的视觉分析的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supporting Iterative Virtual Reality Analytics Design and Evaluation by Systematic Generation of Surrogate Clustered Datasets
Virtual Reality (VR) is a promising technology platform for immersive visual analytics. However, the design space of VR analytics interface design is vast and difficult to explore using traditional A/B comparisons in formal or informal controlled experiments— a fundamental part of an iterative design process. A key factor that complicates such comparisons is the dataset. Exposing participants to the same dataset in all conditions introduces an unavoidable learning effect. On the other hand, using different datasets for all experimental conditions introduces the dataset itself as an uncontrolled variable, which reduces internal validity to an unacceptable degree. In this paper, we propose to rectify this problem by introducing a generative process for synthesizing clustered datasets for VR analytics experiments. This process generates datasets that are distinct while simultaneously allowing systematic comparisons in experiments. A key advantage is that these datasets can then be used in iterative design processes. In a two-part experiment, we show the validity of the generative process and demonstrate how new insights in VR-based visual analytics can be gained using synthetic datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信