Valérian Faure, J. Chardonnet, D. Mestre, F. Ferlay, Michaël Brochier, L. Joblot, F. Mérienne, C. Andriot
{"title":"核维修技能从虚拟环境到现实的转移。方法论指南","authors":"Valérian Faure, J. Chardonnet, D. Mestre, F. Ferlay, Michaël Brochier, L. Joblot, F. Mérienne, C. Andriot","doi":"10.54941/ahfe1003566","DOIUrl":null,"url":null,"abstract":"Nuclear maintenance operations require several types of cognitive and motor skills that can be trained in immersive environments. However, there is a lack of normalized methodological approaches to classify tasks and guide them for a potential transposition to immersive training. This paper proposes a methodological approach to classify nuclear maintenance tasks based on their complexity and the potential transfer of training obtainable from each type of immersion techniques and their related interactions.This proposed methodology provides a novel approach to compare various immersive technologies and interactions in a normalized way for a same industrial task.This paper aims at serving as a base for a methodological guide dedicated to the transposition of nuclear maintenance skills learned in immersive environments to real environment setups and proposes two future use cases based on this methodological approach.","PeriodicalId":102446,"journal":{"name":"Human Factors and Simulation","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer of nuclear maintenance skills from virtual environments to reality - Toward a methodological guide\",\"authors\":\"Valérian Faure, J. Chardonnet, D. Mestre, F. Ferlay, Michaël Brochier, L. Joblot, F. Mérienne, C. Andriot\",\"doi\":\"10.54941/ahfe1003566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear maintenance operations require several types of cognitive and motor skills that can be trained in immersive environments. However, there is a lack of normalized methodological approaches to classify tasks and guide them for a potential transposition to immersive training. This paper proposes a methodological approach to classify nuclear maintenance tasks based on their complexity and the potential transfer of training obtainable from each type of immersion techniques and their related interactions.This proposed methodology provides a novel approach to compare various immersive technologies and interactions in a normalized way for a same industrial task.This paper aims at serving as a base for a methodological guide dedicated to the transposition of nuclear maintenance skills learned in immersive environments to real environment setups and proposes two future use cases based on this methodological approach.\",\"PeriodicalId\":102446,\"journal\":{\"name\":\"Human Factors and Simulation\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1003566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1003566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transfer of nuclear maintenance skills from virtual environments to reality - Toward a methodological guide
Nuclear maintenance operations require several types of cognitive and motor skills that can be trained in immersive environments. However, there is a lack of normalized methodological approaches to classify tasks and guide them for a potential transposition to immersive training. This paper proposes a methodological approach to classify nuclear maintenance tasks based on their complexity and the potential transfer of training obtainable from each type of immersion techniques and their related interactions.This proposed methodology provides a novel approach to compare various immersive technologies and interactions in a normalized way for a same industrial task.This paper aims at serving as a base for a methodological guide dedicated to the transposition of nuclear maintenance skills learned in immersive environments to real environment setups and proposes two future use cases based on this methodological approach.