纹身分割的半合成数据生成

Lázaro J. González Soler, C. Rathgeb, Daniel Fischer
{"title":"纹身分割的半合成数据生成","authors":"Lázaro J. González Soler, C. Rathgeb, Daniel Fischer","doi":"10.1109/IWBF57495.2023.10157837","DOIUrl":null,"url":null,"abstract":"Tattoos have been successfully employed to assist law enforcement in the identification of criminals and victims. Due to various privacy issues in acquiring images containing tattoos, only a limited number of databases exist. This lack of databases has slowed down the development of new tattoo segmentation and retrieval methods. In our work, we propose a new unsupervised generator that allows generating a large number of semi-synthetic images with tattooed subjects. To successfully generate realistic images, a database including the respective skin segmentation map is also proposed. Using this new generator and the skin database, 5,500 semi-synthetic images were created and evaluated for the tattoo segmentation use case. Experimental results on real data show the usefulness of using semi-synthetic images to train semantic segmentation algorithms: several manually mislabelled real samples were successfully corrected. The tattoo generator code, the skin database and generated images have been made available at https://dasec.h-da.de/hda-sstd/.","PeriodicalId":273412,"journal":{"name":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","volume":"494 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-synthetic Data Generation for Tattoo Segmentation\",\"authors\":\"Lázaro J. González Soler, C. Rathgeb, Daniel Fischer\",\"doi\":\"10.1109/IWBF57495.2023.10157837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tattoos have been successfully employed to assist law enforcement in the identification of criminals and victims. Due to various privacy issues in acquiring images containing tattoos, only a limited number of databases exist. This lack of databases has slowed down the development of new tattoo segmentation and retrieval methods. In our work, we propose a new unsupervised generator that allows generating a large number of semi-synthetic images with tattooed subjects. To successfully generate realistic images, a database including the respective skin segmentation map is also proposed. Using this new generator and the skin database, 5,500 semi-synthetic images were created and evaluated for the tattoo segmentation use case. Experimental results on real data show the usefulness of using semi-synthetic images to train semantic segmentation algorithms: several manually mislabelled real samples were successfully corrected. The tattoo generator code, the skin database and generated images have been made available at https://dasec.h-da.de/hda-sstd/.\",\"PeriodicalId\":273412,\"journal\":{\"name\":\"2023 11th International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"494 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 11th International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF57495.2023.10157837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF57495.2023.10157837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纹身已被成功地用于协助执法人员识别罪犯和受害者。由于获取包含纹身的图像的各种隐私问题,只有有限的数据库存在。数据库的缺乏已经减缓了新的纹身分割和检索方法的发展。在我们的工作中,我们提出了一种新的无监督生成器,它可以生成大量带有纹身主题的半合成图像。为了成功地生成逼真的图像,还提出了一个包含各个皮肤分割图的数据库。使用这个新的生成器和皮肤数据库,为纹身分割用例创建并评估了5,500张半合成图像。在真实数据上的实验结果表明,使用半合成图像来训练语义分割算法是有用的:几个人工错误标记的真实样本被成功地纠正了。纹身生成器代码、皮肤数据库和生成的图像已在https://dasec.h-da.de/hda-sstd/上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-synthetic Data Generation for Tattoo Segmentation
Tattoos have been successfully employed to assist law enforcement in the identification of criminals and victims. Due to various privacy issues in acquiring images containing tattoos, only a limited number of databases exist. This lack of databases has slowed down the development of new tattoo segmentation and retrieval methods. In our work, we propose a new unsupervised generator that allows generating a large number of semi-synthetic images with tattooed subjects. To successfully generate realistic images, a database including the respective skin segmentation map is also proposed. Using this new generator and the skin database, 5,500 semi-synthetic images were created and evaluated for the tattoo segmentation use case. Experimental results on real data show the usefulness of using semi-synthetic images to train semantic segmentation algorithms: several manually mislabelled real samples were successfully corrected. The tattoo generator code, the skin database and generated images have been made available at https://dasec.h-da.de/hda-sstd/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信