一种改进的自相似流量快速模拟算法及其在ATM网络中的应用

D. G. Daut, Ming Yu
{"title":"一种改进的自相似流量快速模拟算法及其在ATM网络中的应用","authors":"D. G. Daut, Ming Yu","doi":"10.1109/PACRIM.1999.799466","DOIUrl":null,"url":null,"abstract":"This paper presents an improved self-similar traffic generator, based on fast fractional Gaussian noise, for the purpose of fast simulation of long term correlation of self-similar traffic. The algorithm developed in this study is more efficient than existing methods since it only requires Hurst parameter and can arrive higher accurate sample points if necessary. The effectiveness of these methods has been demonstrated by some numerical examples.","PeriodicalId":176763,"journal":{"name":"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved fast algorithm for simulating self-similar traffic with application in ATM networks\",\"authors\":\"D. G. Daut, Ming Yu\",\"doi\":\"10.1109/PACRIM.1999.799466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved self-similar traffic generator, based on fast fractional Gaussian noise, for the purpose of fast simulation of long term correlation of self-similar traffic. The algorithm developed in this study is more efficient than existing methods since it only requires Hurst parameter and can arrive higher accurate sample points if necessary. The effectiveness of these methods has been demonstrated by some numerical examples.\",\"PeriodicalId\":176763,\"journal\":{\"name\":\"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1999.799466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1999.799466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了快速模拟自相似流量的长期相关性,提出了一种基于快速分数高斯噪声的改进自相似流量发生器。本研究开发的算法只需要Hurst参数,并且在必要时可以得到更高精度的样本点,比现有的方法效率更高。通过数值算例验证了这些方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved fast algorithm for simulating self-similar traffic with application in ATM networks
This paper presents an improved self-similar traffic generator, based on fast fractional Gaussian noise, for the purpose of fast simulation of long term correlation of self-similar traffic. The algorithm developed in this study is more efficient than existing methods since it only requires Hurst parameter and can arrive higher accurate sample points if necessary. The effectiveness of these methods has been demonstrated by some numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信