基于模型的基于VTG的PEM燃料电池系统阴极压力非线性控制

D. Schitz, H. Aschemann
{"title":"基于模型的基于VTG的PEM燃料电池系统阴极压力非线性控制","authors":"D. Schitz, H. Aschemann","doi":"10.1109/MMAR.2019.8864728","DOIUrl":null,"url":null,"abstract":"Fuel cells are in risk of starvation due to a possible drop of the oxygen partial pressure during a dynamic operation. Therefore, feedback control of the cathode pressure plays an important role towards an efficient operation of a polymer electrolyte membrane (PEM) fuel cell system. In this paper, hence, a model-based nonlinear pressure control approach using a variable turbine geometry (VTG) is presented. The system model is derived from physical considerations in symbolic form, and parametrized by a least-squares parameter identification. As the derived dynamic model of the cathode subsystem is highly nonlinear, appropriate techniques using differential flatness are applied. Moreover, a sigma-point Kalman filter (SPKF) provides accurate estimates for the state variables and a lumped disturbance. Simulation results show the effectiveness and illustrate the achieved control performance.","PeriodicalId":392498,"journal":{"name":"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Based Nonlinear Control of the Cathode Pressure of a PEM Fuel Cell System Using a VTG\",\"authors\":\"D. Schitz, H. Aschemann\",\"doi\":\"10.1109/MMAR.2019.8864728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuel cells are in risk of starvation due to a possible drop of the oxygen partial pressure during a dynamic operation. Therefore, feedback control of the cathode pressure plays an important role towards an efficient operation of a polymer electrolyte membrane (PEM) fuel cell system. In this paper, hence, a model-based nonlinear pressure control approach using a variable turbine geometry (VTG) is presented. The system model is derived from physical considerations in symbolic form, and parametrized by a least-squares parameter identification. As the derived dynamic model of the cathode subsystem is highly nonlinear, appropriate techniques using differential flatness are applied. Moreover, a sigma-point Kalman filter (SPKF) provides accurate estimates for the state variables and a lumped disturbance. Simulation results show the effectiveness and illustrate the achieved control performance.\",\"PeriodicalId\":392498,\"journal\":{\"name\":\"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2019.8864728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2019.8864728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在动态运行过程中,由于氧分压可能下降,燃料电池处于饥饿的危险中。因此,阴极压力的反馈控制对聚合物电解质膜(PEM)燃料电池系统的高效运行起着重要的作用。因此,本文提出了一种基于模型的基于可变涡轮几何形状的非线性压力控制方法。该系统模型以符号形式从物理考虑出发,并采用最小二乘参数辨识方法进行参数化。由于导出的阴极子系统的动力学模型是高度非线性的,因此采用了适当的差分平坦度技术。此外,sigma-point Kalman滤波(SPKF)提供了对状态变量和集总扰动的准确估计。仿真结果表明了该方法的有效性,并说明了所实现的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Based Nonlinear Control of the Cathode Pressure of a PEM Fuel Cell System Using a VTG
Fuel cells are in risk of starvation due to a possible drop of the oxygen partial pressure during a dynamic operation. Therefore, feedback control of the cathode pressure plays an important role towards an efficient operation of a polymer electrolyte membrane (PEM) fuel cell system. In this paper, hence, a model-based nonlinear pressure control approach using a variable turbine geometry (VTG) is presented. The system model is derived from physical considerations in symbolic form, and parametrized by a least-squares parameter identification. As the derived dynamic model of the cathode subsystem is highly nonlinear, appropriate techniques using differential flatness are applied. Moreover, a sigma-point Kalman filter (SPKF) provides accurate estimates for the state variables and a lumped disturbance. Simulation results show the effectiveness and illustrate the achieved control performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信