Sajidullah S. Khan, Mohammed Bin Abdulrahman Alawairdhi, M. Al-Akhras
{"title":"基于纹理和方向的鲁棒面部表情识别特征提取","authors":"Sajidullah S. Khan, Mohammed Bin Abdulrahman Alawairdhi, M. Al-Akhras","doi":"10.1109/SERA57763.2023.10197798","DOIUrl":null,"url":null,"abstract":"Facial expressions are the most effective way to characterize people’s motives, emotions, and feelings. Several new methods are proposed each year; however, the accuracy of facial expression recognition still needs to be improved especially in uncontrolled conditions. In this paper, we propose a hybrid facial expression model that considers both texture and orientation features to classify expressions. Two types of descriptors namely Local binary pattern and Weber local descriptor are used to preserve the local intensity information and orientation of edges. In the next step, computing the Histograms of oriented gradients (HOG) features from the Local binary pattern and Weber local descriptor images to capture micro-expressions. Then, the AdaBoost feature selection algorithm is utilized to choose the best features from the combined HOG features. The results of the experiments demonstrate that the method proposed in this study performs better than existing methods.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Texture and Orientation-based Feature Extraction for Robust Facial Expression Recognition\",\"authors\":\"Sajidullah S. Khan, Mohammed Bin Abdulrahman Alawairdhi, M. Al-Akhras\",\"doi\":\"10.1109/SERA57763.2023.10197798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expressions are the most effective way to characterize people’s motives, emotions, and feelings. Several new methods are proposed each year; however, the accuracy of facial expression recognition still needs to be improved especially in uncontrolled conditions. In this paper, we propose a hybrid facial expression model that considers both texture and orientation features to classify expressions. Two types of descriptors namely Local binary pattern and Weber local descriptor are used to preserve the local intensity information and orientation of edges. In the next step, computing the Histograms of oriented gradients (HOG) features from the Local binary pattern and Weber local descriptor images to capture micro-expressions. Then, the AdaBoost feature selection algorithm is utilized to choose the best features from the combined HOG features. The results of the experiments demonstrate that the method proposed in this study performs better than existing methods.\",\"PeriodicalId\":211080,\"journal\":{\"name\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA57763.2023.10197798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Texture and Orientation-based Feature Extraction for Robust Facial Expression Recognition
Facial expressions are the most effective way to characterize people’s motives, emotions, and feelings. Several new methods are proposed each year; however, the accuracy of facial expression recognition still needs to be improved especially in uncontrolled conditions. In this paper, we propose a hybrid facial expression model that considers both texture and orientation features to classify expressions. Two types of descriptors namely Local binary pattern and Weber local descriptor are used to preserve the local intensity information and orientation of edges. In the next step, computing the Histograms of oriented gradients (HOG) features from the Local binary pattern and Weber local descriptor images to capture micro-expressions. Then, the AdaBoost feature selection algorithm is utilized to choose the best features from the combined HOG features. The results of the experiments demonstrate that the method proposed in this study performs better than existing methods.