分数阶独立分量分析对部分遮挡的鲁棒性人脸识别

X. Chen, Wen Li, Zengli Liu, Zaihong Zhou
{"title":"分数阶独立分量分析对部分遮挡的鲁棒性人脸识别","authors":"X. Chen, Wen Li, Zengli Liu, Zaihong Zhou","doi":"10.1109/ISBAST.2014.7013084","DOIUrl":null,"url":null,"abstract":"As biometric vector may not follow the Gaussian distribution under complex light, pose and accessories, systems often yield unacceptable performance when subjected to impulsive, non-Gaussian noise. This paper adopts signal symmetric alpha stable distribution theory to construct fractional low-order independent component analysis algorithm (FLOD-ICA) and applied FLOD-ICA to solve the partial occlusion face recognition problem. Experiments verified that our proposed scheme is effective for face recognition under partial occlusion.","PeriodicalId":292333,"journal":{"name":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","volume":"577 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fractional low-order independent component analysis for face recognition robust to partial occlusion\",\"authors\":\"X. Chen, Wen Li, Zengli Liu, Zaihong Zhou\",\"doi\":\"10.1109/ISBAST.2014.7013084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As biometric vector may not follow the Gaussian distribution under complex light, pose and accessories, systems often yield unacceptable performance when subjected to impulsive, non-Gaussian noise. This paper adopts signal symmetric alpha stable distribution theory to construct fractional low-order independent component analysis algorithm (FLOD-ICA) and applied FLOD-ICA to solve the partial occlusion face recognition problem. Experiments verified that our proposed scheme is effective for face recognition under partial occlusion.\",\"PeriodicalId\":292333,\"journal\":{\"name\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"volume\":\"577 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBAST.2014.7013084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2014.7013084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于生物特征向量在复杂的光线、姿态和附件下可能不遵循高斯分布,系统在受到脉冲非高斯噪声时往往产生不可接受的性能。本文采用信号对称α稳定分布理论构造分数阶低阶独立分量分析算法(FLOD-ICA),并应用FLOD-ICA解决部分遮挡人脸识别问题。实验验证了该方法对局部遮挡下的人脸识别是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional low-order independent component analysis for face recognition robust to partial occlusion
As biometric vector may not follow the Gaussian distribution under complex light, pose and accessories, systems often yield unacceptable performance when subjected to impulsive, non-Gaussian noise. This paper adopts signal symmetric alpha stable distribution theory to construct fractional low-order independent component analysis algorithm (FLOD-ICA) and applied FLOD-ICA to solve the partial occlusion face recognition problem. Experiments verified that our proposed scheme is effective for face recognition under partial occlusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信