蛋白质相互作用的图核提取

A. Airola, Sampo Pyysalo, Jari Björne, T. Pahikkala, Filip Ginter, T. Salakoski
{"title":"蛋白质相互作用的图核提取","authors":"A. Airola, Sampo Pyysalo, Jari Björne, T. Pahikkala, Filip Ginter, T. Salakoski","doi":"10.3115/1572306.1572308","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a graph kernel based approach for the automated extraction of protein-protein interactions (PPI) from scientific literature. In contrast to earlier approaches to PPI extraction, the introduced all-dependency-paths kernel has the capability to consider full, general dependency graphs. We evaluate the proposed method across five publicly available PPI corpora providing the most comprehensive evaluation done for a machine learning based PPI-extraction system. Our method is shown to achieve state-of-the-art performance with respect to comparable evaluations, achieving 56.4 F-score and 84.8 AUC on the AImed corpus. Further, we identify several pitfalls that can make evaluations of PPI-extraction systems incomparable, or even invalid. These include incorrect cross-validation strategies and problems related to comparing F-score results achieved on different evaluation resources.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"A Graph Kernel for Protein-Protein Interaction Extraction\",\"authors\":\"A. Airola, Sampo Pyysalo, Jari Björne, T. Pahikkala, Filip Ginter, T. Salakoski\",\"doi\":\"10.3115/1572306.1572308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a graph kernel based approach for the automated extraction of protein-protein interactions (PPI) from scientific literature. In contrast to earlier approaches to PPI extraction, the introduced all-dependency-paths kernel has the capability to consider full, general dependency graphs. We evaluate the proposed method across five publicly available PPI corpora providing the most comprehensive evaluation done for a machine learning based PPI-extraction system. Our method is shown to achieve state-of-the-art performance with respect to comparable evaluations, achieving 56.4 F-score and 84.8 AUC on the AImed corpus. Further, we identify several pitfalls that can make evaluations of PPI-extraction systems incomparable, or even invalid. These include incorrect cross-validation strategies and problems related to comparing F-score results achieved on different evaluation resources.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1572306.1572308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1572306.1572308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

在本文中,我们提出了一种基于图核的方法来从科学文献中自动提取蛋白质-蛋白质相互作用(PPI)。与早期的PPI提取方法相比,引入的全依赖路径内核能够考虑完整的、通用的依赖关系图。我们在五个公开可用的PPI语料库中评估了所提出的方法,为基于机器学习的PPI提取系统提供了最全面的评估。我们的方法在可比较的评估中达到了最先进的性能,在aims语料库上达到了56.4 f分和84.8 AUC。此外,我们还确定了几个陷阱,这些陷阱可能使ppi提取系统的评估无法比拟,甚至无效。这些问题包括不正确的交叉验证策略,以及在比较不同评估资源上获得的f分数结果时出现的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graph Kernel for Protein-Protein Interaction Extraction
In this paper, we propose a graph kernel based approach for the automated extraction of protein-protein interactions (PPI) from scientific literature. In contrast to earlier approaches to PPI extraction, the introduced all-dependency-paths kernel has the capability to consider full, general dependency graphs. We evaluate the proposed method across five publicly available PPI corpora providing the most comprehensive evaluation done for a machine learning based PPI-extraction system. Our method is shown to achieve state-of-the-art performance with respect to comparable evaluations, achieving 56.4 F-score and 84.8 AUC on the AImed corpus. Further, we identify several pitfalls that can make evaluations of PPI-extraction systems incomparable, or even invalid. These include incorrect cross-validation strategies and problems related to comparing F-score results achieved on different evaluation resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信