基于成本意识的键值存储数据迁移方法

Xiulei Qin, Wen-bo Zhang, Wei Wang, Jun Wei, Xin Zhao, Tao Huang
{"title":"基于成本意识的键值存储数据迁移方法","authors":"Xiulei Qin, Wen-bo Zhang, Wei Wang, Jun Wei, Xin Zhao, Tao Huang","doi":"10.1109/CLUSTER.2012.14","DOIUrl":null,"url":null,"abstract":"Live data migration is an important technique for key-value stores. However, due to the stateful feature, new virtualization technology, stringent low latency requirements and unexpected workload changes, key-value stores deployed in cloud environment have to face new challenges for data migration: effects of VM interference, and the need to trade off between the two ingredients of migration cost, say migration time and performance impact. To address these challenges, we focus on the data migration problem in a load rebalancing scenario and build a new framework that aims to rebalance load while minimizing migration costs. We build two interference-aware prediction models to predict the migration time and performance impact for each action using statistical machine learning and then create a cost model to strike a right balance between the two ingredients of cost. A cost-aware migration algorithm is designed to utilize the cost model and balance rate to guide the choice of possible migration actions. We demonstrate the effectiveness of the data migration approach as well as the cost model and two prediction models using YCSB.","PeriodicalId":143579,"journal":{"name":"2012 IEEE International Conference on Cluster Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards a Cost-Aware Data Migration Approach for Key-Value Stores\",\"authors\":\"Xiulei Qin, Wen-bo Zhang, Wei Wang, Jun Wei, Xin Zhao, Tao Huang\",\"doi\":\"10.1109/CLUSTER.2012.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Live data migration is an important technique for key-value stores. However, due to the stateful feature, new virtualization technology, stringent low latency requirements and unexpected workload changes, key-value stores deployed in cloud environment have to face new challenges for data migration: effects of VM interference, and the need to trade off between the two ingredients of migration cost, say migration time and performance impact. To address these challenges, we focus on the data migration problem in a load rebalancing scenario and build a new framework that aims to rebalance load while minimizing migration costs. We build two interference-aware prediction models to predict the migration time and performance impact for each action using statistical machine learning and then create a cost model to strike a right balance between the two ingredients of cost. A cost-aware migration algorithm is designed to utilize the cost model and balance rate to guide the choice of possible migration actions. We demonstrate the effectiveness of the data migration approach as well as the cost model and two prediction models using YCSB.\",\"PeriodicalId\":143579,\"journal\":{\"name\":\"2012 IEEE International Conference on Cluster Computing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2012.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

动态数据迁移是键值存储的一项重要技术。然而,由于有状态特性、新的虚拟化技术、严格的低延迟需求和意想不到的工作负载变化,部署在云环境中的键值存储在数据迁移中不得不面临新的挑战:VM干扰的影响,以及需要在迁移成本的两个组成部分(如迁移时间和性能影响)之间进行权衡。为了应对这些挑战,我们将重点关注负载再平衡场景中的数据迁移问题,并构建一个旨在重新平衡负载同时最小化迁移成本的新框架。我们建立了两个干扰感知预测模型,使用统计机器学习来预测每个操作的迁移时间和性能影响,然后创建一个成本模型,在成本的两个组成部分之间取得适当的平衡。设计了一种成本感知迁移算法,利用成本模型和平衡率来指导可能迁移行为的选择。我们证明了数据迁移方法以及使用YCSB的成本模型和两个预测模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Cost-Aware Data Migration Approach for Key-Value Stores
Live data migration is an important technique for key-value stores. However, due to the stateful feature, new virtualization technology, stringent low latency requirements and unexpected workload changes, key-value stores deployed in cloud environment have to face new challenges for data migration: effects of VM interference, and the need to trade off between the two ingredients of migration cost, say migration time and performance impact. To address these challenges, we focus on the data migration problem in a load rebalancing scenario and build a new framework that aims to rebalance load while minimizing migration costs. We build two interference-aware prediction models to predict the migration time and performance impact for each action using statistical machine learning and then create a cost model to strike a right balance between the two ingredients of cost. A cost-aware migration algorithm is designed to utilize the cost model and balance rate to guide the choice of possible migration actions. We demonstrate the effectiveness of the data migration approach as well as the cost model and two prediction models using YCSB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信