自动语音识别的非线性重采样变换

Y.D. Liu, Y. Lee, H. Chen, G. Sun
{"title":"自动语音识别的非线性重采样变换","authors":"Y.D. Liu, Y. Lee, H. Chen, G. Sun","doi":"10.1109/NNSP.1991.239510","DOIUrl":null,"url":null,"abstract":"A new technique for speech signal processing called nonlinear resampling transformation (NRT) is proposed. The representation of a speech pattern derived from this technique has two important features: first, it reduces redundancy; second, it effectively removes the nonlinear variations of speech signals in time. The authors have applied NRT to the TI isolated-word database achieving a 99.66% recognition rate on a 10 digits multi-speaker task for a linear predictive neural net classifier. In their experiment, the authors have also found that discriminative training is superior to nondiscriminative training for linear predictive neural network classifiers.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nonlinear resampling transformation for automatic speech recognition\",\"authors\":\"Y.D. Liu, Y. Lee, H. Chen, G. Sun\",\"doi\":\"10.1109/NNSP.1991.239510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new technique for speech signal processing called nonlinear resampling transformation (NRT) is proposed. The representation of a speech pattern derived from this technique has two important features: first, it reduces redundancy; second, it effectively removes the nonlinear variations of speech signals in time. The authors have applied NRT to the TI isolated-word database achieving a 99.66% recognition rate on a 10 digits multi-speaker task for a linear predictive neural net classifier. In their experiment, the authors have also found that discriminative training is superior to nondiscriminative training for linear predictive neural network classifiers.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的语音信号处理技术——非线性重采样变换。基于该技术的语音模式表示有两个重要特点:第一,它减少了冗余;其次,有效地消除了语音信号在时间上的非线性变化。作者将NRT应用于TI隔离词数据库,实现了线性预测神经网络分类器对10位多说话人任务的99.66%的识别率。在他们的实验中,作者还发现判别训练优于线性预测神经网络分类器的非判别训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear resampling transformation for automatic speech recognition
A new technique for speech signal processing called nonlinear resampling transformation (NRT) is proposed. The representation of a speech pattern derived from this technique has two important features: first, it reduces redundancy; second, it effectively removes the nonlinear variations of speech signals in time. The authors have applied NRT to the TI isolated-word database achieving a 99.66% recognition rate on a 10 digits multi-speaker task for a linear predictive neural net classifier. In their experiment, the authors have also found that discriminative training is superior to nondiscriminative training for linear predictive neural network classifiers.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信