与主-被动数据融合相关的被动波束形成增强

Bryan A. Yocom, T. Yudichak, B. Cour
{"title":"与主-被动数据融合相关的被动波束形成增强","authors":"Bryan A. Yocom, T. Yudichak, B. Cour","doi":"10.1109/ACSSC.2008.5074430","DOIUrl":null,"url":null,"abstract":"One goal of active-passive data fusion is to combine the complementary information provided by active and passive sonar sensors to better perform signal processing. Here, investigation is restricted to passive direction of arrival tracking of a single target of interest in the presence of high SNR interferers. Prior information, available in a Bayesian framework, is used to increase track accuracy and decrease computational demand. Comparisons are made to a conventional approach that uses no prior information.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Passive beamforming enhancements in relation to active-passive data fusion\",\"authors\":\"Bryan A. Yocom, T. Yudichak, B. Cour\",\"doi\":\"10.1109/ACSSC.2008.5074430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One goal of active-passive data fusion is to combine the complementary information provided by active and passive sonar sensors to better perform signal processing. Here, investigation is restricted to passive direction of arrival tracking of a single target of interest in the presence of high SNR interferers. Prior information, available in a Bayesian framework, is used to increase track accuracy and decrease computational demand. Comparisons are made to a conventional approach that uses no prior information.\",\"PeriodicalId\":416114,\"journal\":{\"name\":\"2008 42nd Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 42nd Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2008.5074430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

主-被动数据融合的目标之一是将主动和被动声纳传感器提供的互补信息结合起来,更好地进行信号处理。在这里,研究仅限于在存在高信噪比干扰的情况下对单个感兴趣目标的被动到达方向跟踪。先验信息,在贝叶斯框架中可用,用于提高跟踪精度和减少计算需求。与不使用先验信息的传统方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive beamforming enhancements in relation to active-passive data fusion
One goal of active-passive data fusion is to combine the complementary information provided by active and passive sonar sensors to better perform signal processing. Here, investigation is restricted to passive direction of arrival tracking of a single target of interest in the presence of high SNR interferers. Prior information, available in a Bayesian framework, is used to increase track accuracy and decrease computational demand. Comparisons are made to a conventional approach that uses no prior information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信