利用完美磁壁近似的pcb中地弹跳的解析解

Chien-Chang Huang
{"title":"利用完美磁壁近似的pcb中地弹跳的解析解","authors":"Chien-Chang Huang","doi":"10.1109/APMC.2006.4429485","DOIUrl":null,"url":null,"abstract":"In this paper the analytic solutions of ground bounce problems on the power/ground plane structures of printed circuit boards (PCBs) are presented based on the perfect magnetic wall assumptions of the PCB's edges. The Green's function of the infinite power/ground plane is first derived, and then the sidewall reflections are replaced by the image sources, resulting the voltage expressions on the PCB explicitly. The numerical results are compared with the cavity-model analysis and measured data to validate the proposed approach.","PeriodicalId":137931,"journal":{"name":"2006 Asia-Pacific Microwave Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic solutions of ground bounces in PCBs using perfect magnetic wall approximations\",\"authors\":\"Chien-Chang Huang\",\"doi\":\"10.1109/APMC.2006.4429485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the analytic solutions of ground bounce problems on the power/ground plane structures of printed circuit boards (PCBs) are presented based on the perfect magnetic wall assumptions of the PCB's edges. The Green's function of the infinite power/ground plane is first derived, and then the sidewall reflections are replaced by the image sources, resulting the voltage expressions on the PCB explicitly. The numerical results are compared with the cavity-model analysis and measured data to validate the proposed approach.\",\"PeriodicalId\":137931,\"journal\":{\"name\":\"2006 Asia-Pacific Microwave Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Asia-Pacific Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMC.2006.4429485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Asia-Pacific Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2006.4429485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在PCB板边缘完美磁壁假设的基础上,给出了PCB板电源/接地面结构的地弹跳问题的解析解。首先推导出无限功率/地平面的格林函数,然后用像源代替侧壁反射,得到PCB上的电压表达式。将数值计算结果与空腔模型分析和实测数据进行了比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic solutions of ground bounces in PCBs using perfect magnetic wall approximations
In this paper the analytic solutions of ground bounce problems on the power/ground plane structures of printed circuit boards (PCBs) are presented based on the perfect magnetic wall assumptions of the PCB's edges. The Green's function of the infinite power/ground plane is first derived, and then the sidewall reflections are replaced by the image sources, resulting the voltage expressions on the PCB explicitly. The numerical results are compared with the cavity-model analysis and measured data to validate the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信