{"title":"广义Petersen图和鸡尾酒会图补的生成树填充数","authors":"I. S. Jr.","doi":"10.9734/arjom/2023/v19i9714","DOIUrl":null,"url":null,"abstract":"For any graph G, the spanning tree packing number of \\(\\sigma\\) (G), is the maximum number of edge-disjoint spanning trees contained in G. In this study, we determined the maximum number of edge-disjoint spanning trees of the generalized petersen graph and cocktail graph.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Spanning Tree Packing Number of the Complement of Generalized Petersen Graph and Cocktail Party Graph\",\"authors\":\"I. S. Jr.\",\"doi\":\"10.9734/arjom/2023/v19i9714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any graph G, the spanning tree packing number of \\\\(\\\\sigma\\\\) (G), is the maximum number of edge-disjoint spanning trees contained in G. In this study, we determined the maximum number of edge-disjoint spanning trees of the generalized petersen graph and cocktail graph.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i9714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i9714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Spanning Tree Packing Number of the Complement of Generalized Petersen Graph and Cocktail Party Graph
For any graph G, the spanning tree packing number of \(\sigma\) (G), is the maximum number of edge-disjoint spanning trees contained in G. In this study, we determined the maximum number of edge-disjoint spanning trees of the generalized petersen graph and cocktail graph.