预训练的Web表嵌入表发现

Michael Günther, Maik Thiele, Julius Gonsior, Wolfgang Lehner
{"title":"预训练的Web表嵌入表发现","authors":"Michael Günther, Maik Thiele, Julius Gonsior, Wolfgang Lehner","doi":"10.1145/3464509.3464892","DOIUrl":null,"url":null,"abstract":"Pre-trained word embedding models have become the de-facto standard to model text in state-of-the-art analysis tools and frameworks. However, while there are massive amounts of textual data stored in tables, word embedding models are usually pre-trained on large documents. This mismatch can lead to narrowed performance on tasks where text values in tables are analyzed. To improve analysis and retrieval tasks working with tabular data, we propose a novel embedding technique to be pre-trained directly on a large Web table corpus. In an experimental evaluation, we employ our models for various data analysis tasks on different data sources. Our evaluation shows that models using pre-trained Web table embeddings outperform the same models when applied to embeddings pre-trained on text. Moreover, we show that by using Web table embeddings state-of-the-art models for the investigated tasks can be outperformed.","PeriodicalId":306522,"journal":{"name":"Fourth Workshop in Exploiting AI Techniques for Data Management","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pre-Trained Web Table Embeddings for Table Discovery\",\"authors\":\"Michael Günther, Maik Thiele, Julius Gonsior, Wolfgang Lehner\",\"doi\":\"10.1145/3464509.3464892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pre-trained word embedding models have become the de-facto standard to model text in state-of-the-art analysis tools and frameworks. However, while there are massive amounts of textual data stored in tables, word embedding models are usually pre-trained on large documents. This mismatch can lead to narrowed performance on tasks where text values in tables are analyzed. To improve analysis and retrieval tasks working with tabular data, we propose a novel embedding technique to be pre-trained directly on a large Web table corpus. In an experimental evaluation, we employ our models for various data analysis tasks on different data sources. Our evaluation shows that models using pre-trained Web table embeddings outperform the same models when applied to embeddings pre-trained on text. Moreover, we show that by using Web table embeddings state-of-the-art models for the investigated tasks can be outperformed.\",\"PeriodicalId\":306522,\"journal\":{\"name\":\"Fourth Workshop in Exploiting AI Techniques for Data Management\",\"volume\":\"518 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Workshop in Exploiting AI Techniques for Data Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3464509.3464892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Workshop in Exploiting AI Techniques for Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464509.3464892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

预训练的词嵌入模型已经成为在最先进的分析工具和框架中对文本进行建模的事实上的标准。然而,当表中存储了大量的文本数据时,词嵌入模型通常是在大型文档上进行预训练的。这种不匹配可能导致分析表中的文本值的任务的性能降低。为了改进表格数据的分析和检索任务,我们提出了一种新的嵌入技术,可以直接在大型Web表语料库上进行预训练。在实验评估中,我们将我们的模型用于不同数据源上的各种数据分析任务。我们的评估表明,使用预训练的Web表嵌入的模型在应用于文本预训练的嵌入时优于相同的模型。此外,我们表明,通过使用Web表嵌入的最先进的模型可以被调查的任务优于。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-Trained Web Table Embeddings for Table Discovery
Pre-trained word embedding models have become the de-facto standard to model text in state-of-the-art analysis tools and frameworks. However, while there are massive amounts of textual data stored in tables, word embedding models are usually pre-trained on large documents. This mismatch can lead to narrowed performance on tasks where text values in tables are analyzed. To improve analysis and retrieval tasks working with tabular data, we propose a novel embedding technique to be pre-trained directly on a large Web table corpus. In an experimental evaluation, we employ our models for various data analysis tasks on different data sources. Our evaluation shows that models using pre-trained Web table embeddings outperform the same models when applied to embeddings pre-trained on text. Moreover, we show that by using Web table embeddings state-of-the-art models for the investigated tasks can be outperformed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信