{"title":"基于路径聚合特征金字塔网络的航空图像旋转密集目标检测","authors":"Xiangyu Liu, Hong Pan, Xinde Li","doi":"10.1117/12.2538090","DOIUrl":null,"url":null,"abstract":"Object detection based on deep learning algorithms has been an important yet challenging research field in computer vision. The feature pyramid network has become a dominant network architecture in many detection applications because of its powerful feature learning ability for objects with varying scales. To address the challenges in detecting small and densely packed objects, this paper proposes an innovative object detection approach by combining the path aggregation scheme and the feature pyramid network into a unified framework. Specifically, we add a bottom-up branch with lateral connection onto the existing feature pyramid network and apply adaptive feature fusion strategy, which improves the detection performance for small and densely arranged objects in remote sensing images. Experiment results show that our proposed path aggregated feature pyramid network can improve the detection performance for diverse objects in aerial images.","PeriodicalId":384253,"journal":{"name":"International Symposium on Multispectral Image Processing and Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Object detection for rotated and densely arranged objects in aerial images using path aggregated feature pyramid networks\",\"authors\":\"Xiangyu Liu, Hong Pan, Xinde Li\",\"doi\":\"10.1117/12.2538090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection based on deep learning algorithms has been an important yet challenging research field in computer vision. The feature pyramid network has become a dominant network architecture in many detection applications because of its powerful feature learning ability for objects with varying scales. To address the challenges in detecting small and densely packed objects, this paper proposes an innovative object detection approach by combining the path aggregation scheme and the feature pyramid network into a unified framework. Specifically, we add a bottom-up branch with lateral connection onto the existing feature pyramid network and apply adaptive feature fusion strategy, which improves the detection performance for small and densely arranged objects in remote sensing images. Experiment results show that our proposed path aggregated feature pyramid network can improve the detection performance for diverse objects in aerial images.\",\"PeriodicalId\":384253,\"journal\":{\"name\":\"International Symposium on Multispectral Image Processing and Pattern Recognition\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Multispectral Image Processing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2538090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Multispectral Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2538090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Object detection for rotated and densely arranged objects in aerial images using path aggregated feature pyramid networks
Object detection based on deep learning algorithms has been an important yet challenging research field in computer vision. The feature pyramid network has become a dominant network architecture in many detection applications because of its powerful feature learning ability for objects with varying scales. To address the challenges in detecting small and densely packed objects, this paper proposes an innovative object detection approach by combining the path aggregation scheme and the feature pyramid network into a unified framework. Specifically, we add a bottom-up branch with lateral connection onto the existing feature pyramid network and apply adaptive feature fusion strategy, which improves the detection performance for small and densely arranged objects in remote sensing images. Experiment results show that our proposed path aggregated feature pyramid network can improve the detection performance for diverse objects in aerial images.