M. Gürsoy, Ö. Saygi, R. Hoyladı, M. Yorulmaz, M. Karaman
{"title":"油水分离用封闭间歇iCVD反应器对不锈钢膜进行表面改性","authors":"M. Gürsoy, Ö. Saygi, R. Hoyladı, M. Yorulmaz, M. Karaman","doi":"10.11113/amst.v25n3.224","DOIUrl":null,"url":null,"abstract":"Oil-spill is one of the major global issues facing society in this century. The aim of this study was to develop a steel-based membrane for selective separation of oil from oil/water mixture. For this purpose, a single-step, rapid and environmentally friendly closed-batch initiated chemical vapor deposition (iCVD) method was employed to deposit hydrophobic thin film on a stainless-steel mesh. Perfluorodecyl acrylate (PFDA) and tert-butyl peroxide (TBPO) were used as monomer and initiator, respectively. Owing to the inherent vapor-based nature of iCVD method provided excellent conformal coverage on the mesh with high durability. iCVD coated mesh showed 96% oil/water separation efficiency. Highly reproducible results were obtained when the oil/water separation experiments were repeated.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Modification of Stainless-Steel Membrane using a Closed-Batch iCVD Reactor for Oil/Water Separation\",\"authors\":\"M. Gürsoy, Ö. Saygi, R. Hoyladı, M. Yorulmaz, M. Karaman\",\"doi\":\"10.11113/amst.v25n3.224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil-spill is one of the major global issues facing society in this century. The aim of this study was to develop a steel-based membrane for selective separation of oil from oil/water mixture. For this purpose, a single-step, rapid and environmentally friendly closed-batch initiated chemical vapor deposition (iCVD) method was employed to deposit hydrophobic thin film on a stainless-steel mesh. Perfluorodecyl acrylate (PFDA) and tert-butyl peroxide (TBPO) were used as monomer and initiator, respectively. Owing to the inherent vapor-based nature of iCVD method provided excellent conformal coverage on the mesh with high durability. iCVD coated mesh showed 96% oil/water separation efficiency. Highly reproducible results were obtained when the oil/water separation experiments were repeated.\",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/amst.v25n3.224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/amst.v25n3.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Modification of Stainless-Steel Membrane using a Closed-Batch iCVD Reactor for Oil/Water Separation
Oil-spill is one of the major global issues facing society in this century. The aim of this study was to develop a steel-based membrane for selective separation of oil from oil/water mixture. For this purpose, a single-step, rapid and environmentally friendly closed-batch initiated chemical vapor deposition (iCVD) method was employed to deposit hydrophobic thin film on a stainless-steel mesh. Perfluorodecyl acrylate (PFDA) and tert-butyl peroxide (TBPO) were used as monomer and initiator, respectively. Owing to the inherent vapor-based nature of iCVD method provided excellent conformal coverage on the mesh with high durability. iCVD coated mesh showed 96% oil/water separation efficiency. Highly reproducible results were obtained when the oil/water separation experiments were repeated.