通过可扩展的、实时的用户内容偏好分析,为内容发现提供动力

Ido Tamir, Royce Bass, Guy Kobrinsky, Baruch Brutman, R. Lempel, Yoram Dayagi
{"title":"通过可扩展的、实时的用户内容偏好分析,为内容发现提供动力","authors":"Ido Tamir, Royce Bass, Guy Kobrinsky, Baruch Brutman, R. Lempel, Yoram Dayagi","doi":"10.1145/2959100.2959111","DOIUrl":null,"url":null,"abstract":"Outbrain is the Web's leading content discovery service, recommending billions of stories daily to a global audience across many of the world's most prestigious and respected publishers. Outbrain's recommendation technology com- bines contextual cues with personalization, where the per- sonalization aspects are a combination of content-based and collaborative filtering techniques. This paper, and the accompanying demo, offer a behind- the-scenes view of the content-based aspects of Outbrain's personalization technology. We detail the types of features we extract from content, as well as the attributes we keep in each user's content-affinity profile. We then describe and demonstrate how we update each user's profile, in real time, as the user consumes content while browsing the Web.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Powering Content Discovery through Scalable, Realtime Profiling of Users' Content Preferences\",\"authors\":\"Ido Tamir, Royce Bass, Guy Kobrinsky, Baruch Brutman, R. Lempel, Yoram Dayagi\",\"doi\":\"10.1145/2959100.2959111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outbrain is the Web's leading content discovery service, recommending billions of stories daily to a global audience across many of the world's most prestigious and respected publishers. Outbrain's recommendation technology com- bines contextual cues with personalization, where the per- sonalization aspects are a combination of content-based and collaborative filtering techniques. This paper, and the accompanying demo, offer a behind- the-scenes view of the content-based aspects of Outbrain's personalization technology. We detail the types of features we extract from content, as well as the attributes we keep in each user's content-affinity profile. We then describe and demonstrate how we update each user's profile, in real time, as the user consumes content while browsing the Web.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Outbrain是网络上领先的内容发现服务,每天向世界上许多最负盛名和最受尊敬的出版商的全球受众推荐数十亿个故事。Outbrain的推荐技术将上下文线索与个性化结合起来,其中个性化方面是基于内容和协作过滤技术的结合。本文及其附带的演示提供了Outbrain个性化技术基于内容方面的幕后视图。我们详细说明了从内容中提取的特征类型,以及保留在每个用户的内容关联配置文件中的属性。然后,我们将描述并演示如何在用户浏览Web时实时更新每个用户的配置文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Powering Content Discovery through Scalable, Realtime Profiling of Users' Content Preferences
Outbrain is the Web's leading content discovery service, recommending billions of stories daily to a global audience across many of the world's most prestigious and respected publishers. Outbrain's recommendation technology com- bines contextual cues with personalization, where the per- sonalization aspects are a combination of content-based and collaborative filtering techniques. This paper, and the accompanying demo, offer a behind- the-scenes view of the content-based aspects of Outbrain's personalization technology. We detail the types of features we extract from content, as well as the attributes we keep in each user's content-affinity profile. We then describe and demonstrate how we update each user's profile, in real time, as the user consumes content while browsing the Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信