I. S. Hephzi Punithavathi, K. Deepa, Cheruku Poorna Venkata Srinivasa Rao, S. Gopal, P. Rajasekar, Ashok Kumar
{"title":"用于检测covid - 19患者的监督机器学习策略","authors":"I. S. Hephzi Punithavathi, K. Deepa, Cheruku Poorna Venkata Srinivasa Rao, S. Gopal, P. Rajasekar, Ashok Kumar","doi":"10.1109/ICECONF57129.2023.10083602","DOIUrl":null,"url":null,"abstract":"The current severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) public health catastrophe, both human lives have been lost and the economy has disrupted severely the current scenario. In this paper, we develop a detection module using a series of steps that involves pre-processing, feature extraction and detection of covid-19 patients based on the images collected from the computerized tomography (CT) images. The images are initially pre-processed and then the features are extracted using Gray Level Co-occurrence Matrix (GLCM) and then finally classified using back propagation neural network (BPNN). The simulation is conducted to test the efficacy of the model against various CT image datasets of numerous patients. The results of simulation shows that the proposed method achieves higher detection rate, and reduced mean average percentage error (MAPE) than other existing methodologies.","PeriodicalId":436733,"journal":{"name":"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised Machine Learning Strategy for detection of covid19 patients\",\"authors\":\"I. S. Hephzi Punithavathi, K. Deepa, Cheruku Poorna Venkata Srinivasa Rao, S. Gopal, P. Rajasekar, Ashok Kumar\",\"doi\":\"10.1109/ICECONF57129.2023.10083602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) public health catastrophe, both human lives have been lost and the economy has disrupted severely the current scenario. In this paper, we develop a detection module using a series of steps that involves pre-processing, feature extraction and detection of covid-19 patients based on the images collected from the computerized tomography (CT) images. The images are initially pre-processed and then the features are extracted using Gray Level Co-occurrence Matrix (GLCM) and then finally classified using back propagation neural network (BPNN). The simulation is conducted to test the efficacy of the model against various CT image datasets of numerous patients. The results of simulation shows that the proposed method achieves higher detection rate, and reduced mean average percentage error (MAPE) than other existing methodologies.\",\"PeriodicalId\":436733,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECONF57129.2023.10083602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECONF57129.2023.10083602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supervised Machine Learning Strategy for detection of covid19 patients
The current severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) public health catastrophe, both human lives have been lost and the economy has disrupted severely the current scenario. In this paper, we develop a detection module using a series of steps that involves pre-processing, feature extraction and detection of covid-19 patients based on the images collected from the computerized tomography (CT) images. The images are initially pre-processed and then the features are extracted using Gray Level Co-occurrence Matrix (GLCM) and then finally classified using back propagation neural network (BPNN). The simulation is conducted to test the efficacy of the model against various CT image datasets of numerous patients. The results of simulation shows that the proposed method achieves higher detection rate, and reduced mean average percentage error (MAPE) than other existing methodologies.