一种基于自适应距离的批量自组织映射算法

L. Pacífico, F. D. Carvalho
{"title":"一种基于自适应距离的批量自组织映射算法","authors":"L. Pacífico, F. D. Carvalho","doi":"10.1109/IJCNN.2011.6033515","DOIUrl":null,"url":null,"abstract":"Clustering methods aims to organize a set of items into clusters such that items within a given cluster have a high degree of similarity, while items belonging to different clusters have a high degree of dissimilarity. The self-organizing map (SOM) introduced by Kohonen is an unsupervised competitive learning neural network method which has both clustering and visualization properties, using a neighborhood lateral interaction function to discover the topological structure hidden in the data set. In this paper, we introduce a batch self-organizing map algorithm based on adaptive distances. Experimental results obtained in real benchmark datasets show the effectiveness of our approach in comparison with traditional batch self-organizing map algorithms.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A batch self-organizing maps algorithm based on adaptive distances\",\"authors\":\"L. Pacífico, F. D. Carvalho\",\"doi\":\"10.1109/IJCNN.2011.6033515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering methods aims to organize a set of items into clusters such that items within a given cluster have a high degree of similarity, while items belonging to different clusters have a high degree of dissimilarity. The self-organizing map (SOM) introduced by Kohonen is an unsupervised competitive learning neural network method which has both clustering and visualization properties, using a neighborhood lateral interaction function to discover the topological structure hidden in the data set. In this paper, we introduce a batch self-organizing map algorithm based on adaptive distances. Experimental results obtained in real benchmark datasets show the effectiveness of our approach in comparison with traditional batch self-organizing map algorithms.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

聚类方法的目的是将一组项目组织成一个簇,使一个簇内的项目具有高度的相似性,而属于不同簇的项目具有高度的不相似性。Kohonen提出的自组织映射(SOM)是一种具有聚类和可视化特性的无监督竞争学习神经网络方法,利用邻域横向交互函数来发现隐藏在数据集中的拓扑结构。本文提出了一种基于自适应距离的批量自组织映射算法。在真实基准数据集上的实验结果表明,与传统的批量自组织映射算法相比,本文方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A batch self-organizing maps algorithm based on adaptive distances
Clustering methods aims to organize a set of items into clusters such that items within a given cluster have a high degree of similarity, while items belonging to different clusters have a high degree of dissimilarity. The self-organizing map (SOM) introduced by Kohonen is an unsupervised competitive learning neural network method which has both clustering and visualization properties, using a neighborhood lateral interaction function to discover the topological structure hidden in the data set. In this paper, we introduce a batch self-organizing map algorithm based on adaptive distances. Experimental results obtained in real benchmark datasets show the effectiveness of our approach in comparison with traditional batch self-organizing map algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信