模糊语义相似度度量中的模糊影响

Naeemeh Adel, Keeley A. Crockett, Joao Paulo Carvalho, V. Cross
{"title":"模糊语义相似度度量中的模糊影响","authors":"Naeemeh Adel, Keeley A. Crockett, Joao Paulo Carvalho, V. Cross","doi":"10.1109/FUZZ45933.2021.9494535","DOIUrl":null,"url":null,"abstract":"The field of Computing with Words has been pivotal in the development of fuzzy semantic similarity measures. Fuzzy semantic similarity measures allow the modelling of words in a given context with a tolerance for the imprecise nature of human perceptions. In this work, we look at how this imprecision can be addressed with the use of fuzzy semantic similarity measures in the field of natural language processing. A fuzzy influence factor is introduced into an existing measure known as FUSE. FUSE computes the similarity between two short texts based on weighted syntactic and semantic components in order to address the issue of comparing fuzzy words that exist in different word categories. A series of empirical experiments investigates the effect of introducing a fuzzy influence factor into FUSE across a number of short text datasets. Comparisons with other similarity measures demonstrates that the fuzzy influence factor has a positive effect in improving the correlation of machine similarity judgments with similarity judgments of humans.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Influence in Fuzzy Semantic Similarity Measures\",\"authors\":\"Naeemeh Adel, Keeley A. Crockett, Joao Paulo Carvalho, V. Cross\",\"doi\":\"10.1109/FUZZ45933.2021.9494535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of Computing with Words has been pivotal in the development of fuzzy semantic similarity measures. Fuzzy semantic similarity measures allow the modelling of words in a given context with a tolerance for the imprecise nature of human perceptions. In this work, we look at how this imprecision can be addressed with the use of fuzzy semantic similarity measures in the field of natural language processing. A fuzzy influence factor is introduced into an existing measure known as FUSE. FUSE computes the similarity between two short texts based on weighted syntactic and semantic components in order to address the issue of comparing fuzzy words that exist in different word categories. A series of empirical experiments investigates the effect of introducing a fuzzy influence factor into FUSE across a number of short text datasets. Comparisons with other similarity measures demonstrates that the fuzzy influence factor has a positive effect in improving the correlation of machine similarity judgments with similarity judgments of humans.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

词计算领域在模糊语义相似度度量的发展中起着关键作用。模糊语义相似度度量允许在给定上下文中对单词进行建模,并容忍人类感知的不精确性。在这项工作中,我们研究了如何在自然语言处理领域使用模糊语义相似度量来解决这种不精确。将模糊影响因子引入现有的FUSE测度中。FUSE基于加权的句法和语义分量计算两个短文本之间的相似度,以解决存在于不同词类中的模糊词的比较问题。通过一系列的实证实验,研究了在多个短文本数据集上引入模糊影响因子对FUSE的影响。与其他相似度度量的比较表明,模糊影响因子对提高机器相似度判断与人类相似度判断的相关性具有积极作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Influence in Fuzzy Semantic Similarity Measures
The field of Computing with Words has been pivotal in the development of fuzzy semantic similarity measures. Fuzzy semantic similarity measures allow the modelling of words in a given context with a tolerance for the imprecise nature of human perceptions. In this work, we look at how this imprecision can be addressed with the use of fuzzy semantic similarity measures in the field of natural language processing. A fuzzy influence factor is introduced into an existing measure known as FUSE. FUSE computes the similarity between two short texts based on weighted syntactic and semantic components in order to address the issue of comparing fuzzy words that exist in different word categories. A series of empirical experiments investigates the effect of introducing a fuzzy influence factor into FUSE across a number of short text datasets. Comparisons with other similarity measures demonstrates that the fuzzy influence factor has a positive effect in improving the correlation of machine similarity judgments with similarity judgments of humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信