一种用于遥感图像变化检测的超像素共分割方法

Weiyong Tong, Yu-xiang Zhang, Hu Song, Qingqing Song
{"title":"一种用于遥感图像变化检测的超像素共分割方法","authors":"Weiyong Tong, Yu-xiang Zhang, Hu Song, Qingqing Song","doi":"10.1109/icet55676.2022.9824542","DOIUrl":null,"url":null,"abstract":"In this paper, a novel superpixel cosegmentation framework for Change Detection (CD) is proposed. First, simple linear iterative clustering is implemented to bi-temporal images to get superpixel maps. Based on multivariate probability density functions of the corresponding superpixels in two maps, a similarity map is then measured by multivariate Kullback-Leibler distance to represent the change feature. Next, combined with the respective image features of the bi-temporal images, two different detection results are obtained by energy minimization using a superpixel graph cut algorithm. Finally, by comparing the relationship between the changed objects in two different CD maps, the final change result is obtained. And the experiment results of high spatial resolution dataset demonstrate the effectiveness and superiority of the proposed algorithm.","PeriodicalId":166358,"journal":{"name":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Superpixel Cosegmentation for Change Detection in Remote Sensing Imagery\",\"authors\":\"Weiyong Tong, Yu-xiang Zhang, Hu Song, Qingqing Song\",\"doi\":\"10.1109/icet55676.2022.9824542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel superpixel cosegmentation framework for Change Detection (CD) is proposed. First, simple linear iterative clustering is implemented to bi-temporal images to get superpixel maps. Based on multivariate probability density functions of the corresponding superpixels in two maps, a similarity map is then measured by multivariate Kullback-Leibler distance to represent the change feature. Next, combined with the respective image features of the bi-temporal images, two different detection results are obtained by energy minimization using a superpixel graph cut algorithm. Finally, by comparing the relationship between the changed objects in two different CD maps, the final change result is obtained. And the experiment results of high spatial resolution dataset demonstrate the effectiveness and superiority of the proposed algorithm.\",\"PeriodicalId\":166358,\"journal\":{\"name\":\"2022 IEEE 5th International Conference on Electronics Technology (ICET)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Conference on Electronics Technology (ICET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icet55676.2022.9824542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icet55676.2022.9824542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于变化检测(CD)的超像素共分割框架。首先,对双时相图像进行简单线性迭代聚类,得到超像素地图;基于两幅图中对应超像素的多元概率密度函数,用多元Kullback-Leibler距离度量相似度图,表示变化特征。然后,结合双时相图像各自的图像特征,利用超像素图切算法进行能量最小化,得到两种不同的检测结果。最后,通过比较两种不同CD映射中变化对象之间的关系,得到最终的变化结果。高空间分辨率数据集的实验结果验证了该算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Superpixel Cosegmentation for Change Detection in Remote Sensing Imagery
In this paper, a novel superpixel cosegmentation framework for Change Detection (CD) is proposed. First, simple linear iterative clustering is implemented to bi-temporal images to get superpixel maps. Based on multivariate probability density functions of the corresponding superpixels in two maps, a similarity map is then measured by multivariate Kullback-Leibler distance to represent the change feature. Next, combined with the respective image features of the bi-temporal images, two different detection results are obtained by energy minimization using a superpixel graph cut algorithm. Finally, by comparing the relationship between the changed objects in two different CD maps, the final change result is obtained. And the experiment results of high spatial resolution dataset demonstrate the effectiveness and superiority of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信