基于Deeplab V3+的光伏板航空正射影分割方法

Junwen Wang, Min Liu, Wenjun Yan
{"title":"基于Deeplab V3+的光伏板航空正射影分割方法","authors":"Junwen Wang, Min Liu, Wenjun Yan","doi":"10.1117/12.2667262","DOIUrl":null,"url":null,"abstract":"The health management and maintenance of photovoltaic (PV) plants are inherent problems in the PV industry. The need to establish digital positioning for each PV string and PV module is urgent. This paper provides a complete end-to-end system for digital segmentation and localization of PV strings and modules on the aerial orthophotos. The system includes three main parts: (1) the dataset built from the images captured by Unmanned Aerial Vehicles (UAV) and corresponding image preprocessing techniques. (2) a modified Deeplab V3+ neural network is designed to extract the PV strings in the aerial orthophotos. (3) a PV module extraction algorithm is introduced to get the centroid of every PV module and the sliding window strategy is adopted to avoid the chopped PV strings problem. With the above process, the digital location information of PV panels can be correlated with the actual physical information. We conduct detailed experiments with actual scene data and different models. The extensive results confirm the accuracy and efficiency of the system proposed in this paper with comparative analysis.","PeriodicalId":137914,"journal":{"name":"International Conference on Artificial Intelligence, Virtual Reality, and Visualization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deeplab V3+ based segmentation method for PV panels with aerial orthoimages\",\"authors\":\"Junwen Wang, Min Liu, Wenjun Yan\",\"doi\":\"10.1117/12.2667262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The health management and maintenance of photovoltaic (PV) plants are inherent problems in the PV industry. The need to establish digital positioning for each PV string and PV module is urgent. This paper provides a complete end-to-end system for digital segmentation and localization of PV strings and modules on the aerial orthophotos. The system includes three main parts: (1) the dataset built from the images captured by Unmanned Aerial Vehicles (UAV) and corresponding image preprocessing techniques. (2) a modified Deeplab V3+ neural network is designed to extract the PV strings in the aerial orthophotos. (3) a PV module extraction algorithm is introduced to get the centroid of every PV module and the sliding window strategy is adopted to avoid the chopped PV strings problem. With the above process, the digital location information of PV panels can be correlated with the actual physical information. We conduct detailed experiments with actual scene data and different models. The extensive results confirm the accuracy and efficiency of the system proposed in this paper with comparative analysis.\",\"PeriodicalId\":137914,\"journal\":{\"name\":\"International Conference on Artificial Intelligence, Virtual Reality, and Visualization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Artificial Intelligence, Virtual Reality, and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence, Virtual Reality, and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光伏电站的健康管理和维护是光伏产业的固有问题。迫切需要为每个光伏管柱和光伏组件建立数字定位。本文为航空正射影像上PV串和模块的数字分割和定位提供了一套完整的端到端系统。该系统包括三个主要部分:(1)由无人机捕获的图像构建数据集并进行相应的图像预处理技术。(2)设计了一种改进的Deeplab V3+神经网络,用于提取航空正射影像中的PV串。(3)引入光伏组件提取算法,获取每个光伏组件的质心,并采用滑动窗口策略,避免光伏串切分问题。通过上述过程,可以将光伏板的数字位置信息与实际物理信息相关联。我们用实际场景数据和不同的模型进行了详细的实验。广泛的结果通过对比分析验证了本文提出的系统的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deeplab V3+ based segmentation method for PV panels with aerial orthoimages
The health management and maintenance of photovoltaic (PV) plants are inherent problems in the PV industry. The need to establish digital positioning for each PV string and PV module is urgent. This paper provides a complete end-to-end system for digital segmentation and localization of PV strings and modules on the aerial orthophotos. The system includes three main parts: (1) the dataset built from the images captured by Unmanned Aerial Vehicles (UAV) and corresponding image preprocessing techniques. (2) a modified Deeplab V3+ neural network is designed to extract the PV strings in the aerial orthophotos. (3) a PV module extraction algorithm is introduced to get the centroid of every PV module and the sliding window strategy is adopted to avoid the chopped PV strings problem. With the above process, the digital location information of PV panels can be correlated with the actual physical information. We conduct detailed experiments with actual scene data and different models. The extensive results confirm the accuracy and efficiency of the system proposed in this paper with comparative analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信